Krauß Sascha D, Petersen Dennis, Niedieker Daniel, Fricke Inka, Freier Erik, El-Mashtoly Samir F, Gerwert Klaus, Mosig Axel
Department of Biophysics, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
Analyst. 2015 Apr 7;140(7):2360-8. doi: 10.1039/c4an02153c.
A major promise of Raman microscopy is the label-free detailed recognition of cellular and subcellular structures. To this end, identifying colocalization patterns between Raman spectral images and fluorescence microscopic images is a key step to annotate subcellular components in Raman spectroscopic images. While existing approaches to resolve subcellular structures are based on fluorescence labeling, we propose a combination of a colocalization scheme with subsequent training of a supervised classifier that allows label-free resolution of cellular compartments. Our colocalization scheme unveils statistically significant overlapping regions by identifying correlation between the fluorescence color channels and clusters from unsupervised machine learning methods like hierarchical cluster analysis. The colocalization scheme is used as a pre-selection to gather appropriate spectra as training data. These spectra are used in the second part as training data to establish a supervised random forest classifier to automatically identify lipid droplets and nucleus. We validate our approach by examining Raman spectral images overlaid with fluorescence labelings of different cellular compartments, indicating that specific components may indeed be identified label-free in the spectral image. A Matlab implementation of our colocalization software is available at .
拉曼显微镜的一个主要优势在于能够对细胞和亚细胞结构进行无标记的详细识别。为此,识别拉曼光谱图像与荧光显微镜图像之间的共定位模式是注释拉曼光谱图像中亚细胞成分的关键步骤。虽然现有的解析亚细胞结构的方法基于荧光标记,但我们提出了一种共定位方案,并结合后续对监督分类器的训练,从而实现对细胞区室的无标记解析。我们的共定位方案通过识别荧光颜色通道与来自无监督机器学习方法(如层次聚类分析)的聚类之间的相关性,揭示具有统计学意义的重叠区域。该共定位方案用作预筛选,以收集合适的光谱作为训练数据。在第二部分中,这些光谱用作训练数据,以建立监督随机森林分类器,从而自动识别脂滴和细胞核。我们通过检查叠加有不同细胞区室荧光标记的拉曼光谱图像来验证我们的方法,这表明特定成分确实可以在光谱图像中实现无标记识别。我们的共定位软件的Matlab实现可在[具体网址]获取。