Suppr超能文献

基于无监督机器学习的滤泡性甲状腺癌细胞高分辨率拉曼显微镜检测

High-Resolution Raman Microscopic Detection of Follicular Thyroid Cancer Cells with Unsupervised Machine Learning.

机构信息

Research Institute for Electronic Science , Hokkaido University , Kita 20, Nishi 10 , Kita-ku, Sapporo 001-0020 , Japan.

Department of Applied Physics , Osaka University , 2-1 Yamadaoka , Suita, Osaka 565-0871 , Japan.

出版信息

J Phys Chem B. 2019 May 23;123(20):4358-4372. doi: 10.1021/acs.jpcb.9b01159. Epub 2019 May 8.

Abstract

We use Raman microscopic images with high spatial and spectral resolution to investigate differences between human follicular thyroid (Nthy-ori 3-1) and follicular thyroid carcinoma (FTC-133) cells, a well-differentiated thyroid cancer. Through comparison to classification of single-cell Raman spectra, the importance of subcellular information in the Raman images is emphasized. Subcellular information is extracted through a coarse-graining of the spectra at high spatial resolution (∼1.7 μm), producing a set of characteristic spectral groups representing locations having similar biochemical compositions. We develop a cell classifier based on the frequencies at which the characteristic spectra appear within each of the single cells. Using this classifier, we obtain a more accurate (89.8%) distinction of FTC-133 and Nthy-ori 3-1, in comparison to single-cell spectra (77.6%). We also infer which subcellular components are important to cellular distinction; we find that cancerous FTC-133 cells contain increased populations of lipid-containing components and decreased populations of cytochrome-containing components relative to Nthy-ori 3-1, and that the regions containing these contributions are largely outside the cell nuclei. In addition to increased classification accuracy, this approach provides rich subcellular information about biochemical differences and cellular locations associated with the distinction of the normal and cancerous follicular thyroid cells.

摘要

我们使用具有高空间和光谱分辨率的拉曼显微镜图像来研究人类滤泡甲状腺(Nthy-ori 3-1)和滤泡甲状腺癌(FTC-133)细胞之间的差异,FTC-133 是一种分化良好的甲状腺癌。通过对单细胞拉曼光谱的分类比较,强调了拉曼图像中亚细胞信息的重要性。通过在高空间分辨率(约 1.7 μm)下对光谱进行粗粒化,可以提取亚细胞信息,产生一组代表具有相似生化组成的位置的特征光谱组。我们基于每个单细胞中特征光谱出现的频率开发了一种细胞分类器。使用该分类器,我们可以获得更准确的(89.8%)FTC-133 和 Nthy-ori 3-1 区分,与单细胞光谱(77.6%)相比。我们还推断出哪些亚细胞成分对细胞区分很重要;我们发现与 Nthy-ori 3-1 相比,癌变的 FTC-133 细胞中含有更多的含脂成分和更少的含细胞色素成分的群体,并且这些贡献的区域主要在细胞核外。除了提高分类准确性外,这种方法还提供了有关与正常和癌变滤泡甲状腺细胞区分相关的生化差异和细胞位置的丰富亚细胞信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验