Department of Nuclear Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia and VERA Laboratory, Faculty of Physics, University of Vienna, 1090 Vienna, Austria.
Atominstitut, Vienna University of Technology, 1020 Vienna, Austria.
Phys Rev Lett. 2015 Jan 30;114(4):041101. doi: 10.1103/PhysRevLett.114.041101. Epub 2015 Jan 28.
In order to resolve a recent discrepancy in the half-life of 60Fe, we performed an independent measurement with a new method that determines the 60Fe content of a material relative to 55Fe (t1/2=2.744 yr) with accelerator mass spectrometry. Our result of (2.50±0.12)×10(6) yr clearly favors the recently reported value (2.62±0.04)×10(6) yr, and rules out the older result of (1.49±0.27)×10(6) yr. The present weighted mean half-life value of (2.60±0.05)×10(6) yr substantially improves the reliability as an important chronometer for astrophysical applications in the million-year time range. This includes its use as a sensitive probe for studying recent chemical evolution of our Galaxy, the formation of the early Solar System, nucleosynthesis processes in massive stars, and as an indicator of a recent nearby supernova.
为了解决最近 60Fe 半衰期的差异,我们使用一种新的方法进行了独立测量,该方法通过加速器质谱法确定材料中 60Fe 相对于 55Fe(t1/2=2.744 年)的含量。我们的结果(2.50±0.12)×10(6)年明显倾向于最近报道的(2.62±0.04)×10(6)年,排除了旧的(1.49±0.27)×10(6)年的结果。目前,(2.60±0.05)×10(6)年的加权平均半衰期值作为百万年时间范围内天体物理应用的重要计时器,大大提高了其可靠性。这包括将其用作研究我们银河系最近化学演化、早期太阳系形成、大质量恒星核合成过程以及作为附近最近超新星指示器的灵敏探针。