Amelin Yuri, Yin Qing-Zhu
State Key Laboratory of Deep Earth Processes and Resources, Guangzhou Institute of Geochemistry CAS, Guangzhou 510640, China.
Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA 95616, USA.
Natl Sci Rev. 2025 Jul 11;12(9):nwaf281. doi: 10.1093/nsr/nwaf281. eCollection 2025 Sep.
We review the developments in isotope chronology of the oldest extraterrestrial materials achieved in the last 10-15 years, with emphasis on high precision U-Pb and extinct radionuclide dating, and on application of these methods to the materials that formed in the first 7 million years after formation of proto-Sun, the time during which the gas and dust in the protoplanetary disc accreted or dissipated, and planetesimals and protoplanets formed. The analytical precision of isotopic dates now allows resolving events that occurred within 100 000-300 000 years of each other. The main challenges currently faced by isotope cosmochronology are matching the achieved precision with a similar level of accuracy, adapting to the growing evidence of complex isotope heterogeneity of the protoplanetary disc, extracting ages of individual events from complex rocks, and responding to growing quantity, quality and diversity of recently discovered meteorites and samples returned by space missions.
我们回顾了过去10至15年里在最古老外星物质同位素年代学方面取得的进展,重点关注高精度铀铅定年法和灭绝放射性核素定年法,以及这些方法在原太阳形成后最初700万年形成的物质上的应用。这一时期,原行星盘中的气体和尘埃聚集或消散,小行星和原行星形成。目前,同位素年代测定的分析精度已能够分辨出相互间隔10万至30万年发生的事件。同位素宇宙年代学目前面临的主要挑战包括:使达到的精度与相似水平的准确度相匹配;适应原行星盘复杂同位素不均一性的证据不断增加的情况;从复杂岩石中提取单个事件的年龄;以及应对最近发现的陨石和太空任务带回的样本在数量、质量和多样性方面不断增长的情况。