Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
Phys Rev Lett. 2015 Jan 30;114(4):046802. doi: 10.1103/PhysRevLett.114.046802. Epub 2015 Jan 29.
The electronic structure of epitaxial single-layer MoS2 on Au(111) is investigated by angle-resolved photoemission spectroscopy. Pristine and potassium-doped layers are studied in order to gain access to the conduction band. The potassium-doped layer is found to have a (1.39±0.05) eV direct band gap at K[over ¯] with the valence band top at Γ[over ¯] having a significantly higher binding energy than at K[over ¯]. The moiré superstructure of the epitaxial system does not lead to the presence of observable replica bands or minigaps. The degeneracy of the upper valence band at K[over ¯] is found to be lifted by the spin-orbit interaction, leading to a splitting of (145±4) meV. This splitting is anisotropic and in excellent agreement with recent calculations. Finally, it is shown that the potassium doping does not only give rise to a rigid shift of the band structure but also to a distortion, leading to the possibility of band structure engineering in single-layers of transition metal dichalcogenides.
通过角分辨光电子能谱研究了外延单层 MoS2 在 Au(111) 上的电子结构。为了获得导带,研究了原始和钾掺杂的层。发现钾掺杂层在 K[over ¯]处具有(1.39±0.05) eV 的直接带隙,价带顶在 Γ[over ¯]处的结合能明显高于 K[over ¯]处。外延系统的莫尔超晶格不会导致可观察的复制品带或微隙的存在。在 K[over ¯]处,上价带的简并性被自旋轨道相互作用消除,导致(145±4) 毫电子伏特的分裂。这种分裂是各向异性的,与最近的计算非常吻合。最后,结果表明,钾掺杂不仅导致能带结构的刚性移动,而且还导致能带结构的变形,从而为过渡金属二硫属化物单层的能带结构工程提供了可能性。