Suppr超能文献

正常和硝酸盐限制条件下小麦叶片中空间代谢物分布的分析

Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions.

作者信息

Allwood J William, Chandra Surya, Xu Yun, Dunn Warwick B, Correa Elon, Hopkins Laura, Goodacre Royston, Tobin Alyson K, Bowsher Caroline G

机构信息

School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, UK.

出版信息

Phytochemistry. 2015 Jul;115:99-111. doi: 10.1016/j.phytochem.2015.01.007. Epub 2015 Feb 10.

Abstract

The control and interaction between nitrogen and carbon assimilatory pathways is essential in both photosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromising growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum) primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the leaf growth conditions. Principal Component-Discriminant Function Analysis (PC-DFA) revealed distinct clustering between base, and tip sections of the developing wheat leaf, and from plants grown in the presence or absence of nitrate. Gas Chromatography-Time of Flight/Mass Spectrometry (GC-TOF/MS) combined with multivariate and univariate analyses, and Bayesian network (BN) analysis, distinguished different tissues and confirmed the physiological switch from high rates of respiration to photosynthesis along the leaf. The operation of nitrogen metabolism impacted on the levels and distribution of amino acids, organic acids and carbohydrates within the wheat leaf. In plants grown in the presence of nitrate there was reduced levels of a number of sugar metabolites in the leaf base and an increase in maltose levels, possibly reflecting an increase in starch turnover. The value of using this combined metabolomics analysis for further functional investigations in the future are discussed.

摘要

氮同化途径与碳同化途径之间的调控与相互作用对于光合组织和非光合组织都至关重要,以便在不影响生长的情况下支持代谢过程。小麦(Triticum aestivum)初生叶基部和成熟区域之间的生理差异证实了从异养代谢到自养代谢的转变。傅里叶变换红外(FT-IR)光谱证实了叶片生长条件的适用性和表型可重复性。主成分判别函数分析(PC-DFA)揭示了发育中小麦叶片基部和尖端部分之间以及在有或无硝酸盐条件下生长的植株之间的明显聚类。气相色谱-飞行时间/质谱联用(GC-TOF/MS)结合多变量和单变量分析以及贝叶斯网络(BN)分析,区分了不同组织,并证实了沿叶片从高呼吸速率到光合作用的生理转变。氮代谢的运作影响了小麦叶片中氨基酸、有机酸和碳水化合物的水平及分布。在有硝酸盐条件下生长的植株中,叶片基部多种糖代谢物水平降低,麦芽糖水平升高,这可能反映了淀粉周转的增加。文中讨论了未来使用这种组合代谢组学分析进行进一步功能研究的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9757/4518043/8247290c940c/gr6.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验