Yue H, Chan K S
Chiron Corporation, Emeryville, CA 94608, USA.
Biometrics. 1997 Sep;53(3):785-93.
We consider the statistical modeling of data consisting of many study subjects with serially correlated multivariate survival responses. The (ordinary) frailty model handles the serial correlation in such data by introducing an unobserved multiplicative random effect term, called the frailty, in the hazard function. The frailties are often assumed to be identical for the survival times from the same unit. We have generalized the frailty model by allowing the frailties to vary stochastically with the indices. We have proposed a simple scheme to update the dynamic frailties. This approach assumes that the random effects are gamma distributed. At each occurrence, the two gamma parameters are updated according to the past information. In terms of their marginal distributions, the dynamic frailties form a multiplicative random walk. This approach results in a tractable likelihood. The small sample behavior of the MLE is studied via a simulation experiment. The model is then illustrated with a data set from an animal carcinogenesis experiment.
我们考虑对由许多具有序列相关多元生存反应的研究对象组成的数据进行统计建模。(普通)脆弱模型通过在风险函数中引入一个未观察到的乘法随机效应项(称为脆弱性)来处理此类数据中的序列相关性。对于来自同一单位的生存时间,通常假设脆弱性是相同的。我们通过允许脆弱性随指标随机变化,对脆弱模型进行了推广。我们提出了一种简单的方案来更新动态脆弱性。该方法假设随机效应服从伽马分布。每次出现时,根据过去的信息更新两个伽马参数。就其边际分布而言,动态脆弱性形成一个乘法随机游走。这种方法产生了一个易于处理的似然函数。通过模拟实验研究了最大似然估计(MLE)的小样本行为。然后用一个动物致癌实验的数据集对该模型进行说明。