Zhou Xiaoling, Liang Junsheng, Zhang Yi, Zhao Huading, Guo Ying, Shi Shuyun
Hunan Academy of Forest Sciences, Changsha 410004, PR China; Key Laboratory of Hunan Tree Clones Breeding, Changsha 410004, PR China.
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Mar 15;985:149-54. doi: 10.1016/j.jchromb.2015.01.030. Epub 2015 Feb 2.
Although Polygonatum odoratum has been widely used as medicinal plant and food supplement for treating diabetes, little is known regarding its bioactive components. In this study, ultrafiltration-HPLC based ligand screening was developed to screen α-glucosidase inhibitors from P. odoratum for the first time. Then bioactive components were target-guided separated by combining stepwise high-speed counter-current chromatography (HSCCC) using petroleum ether-ethyl acetate-methanol-water (1:4:0.8:4.2, v/v/v/v), (1:4:1.8:3.2, v/v/v/v) and (1:4:2.3:2.7, v/v/v/v) as solvent systems with Sephadex LH-20 chromatography eluted by MeCN-MeOH (1:1, v/v). Five phenethyl cinnamides, N-cis-feruloyloctopamine (1); N-trans-p-coumaroyloctopamine (2), N-trans-feruloyloctopamine (3), N-trans-p-coumaroyltyramine (4) and N-trans-feruloyltyramine (5), and four homoisoflavanones, (3R)-5,7-dihydroxyl-3-(2',4'-dihydroxylbenzyl)-chroman-4-one (6), (3R)-5,7-dihydroxyl-6-methyl-3-(4'-hydroxylbenzyl)-chroman-4-one (7), (3R)-5,7-dihydroxyl-6-methyl-8-methoxyl-3-(4'-hydroxylbenzyl)-chroman-4-one (8); and (3R)-5,7-dihydroxyl-6,8-dimethyl-3-(4'-hydroxylbenzyl)-chroman-4-one) (9), with purity over 98.5% were purified, and their structures were identified by UV, MS, and (1)H NMR. Notably, compounds 2 and 4 were first reported in genus Polygonatum, while compound 1 was first obtained from family Liliaceae. In addition, α-glucosidase inhibitory activities of compounds 1-9 were evaluated, and compounds 2 and 4 exhibited stronger α-glucosidase inhibitory activity with IC50 values of 2.3 and 2.7μM. The results suggested the potential medicinal use of P. odoratum, and the technology could be widely applied for rapid screening and preparative separation of a group of bioactive compounds from complex matrix.
虽然玉竹已被广泛用作治疗糖尿病的药用植物和食品补充剂,但其生物活性成分却鲜为人知。在本研究中,首次开发了基于超滤 - 高效液相色谱的配体筛选方法,从玉竹中筛选α - 葡萄糖苷酶抑制剂。然后,通过将逐步高速逆流色谱(HSCCC)与Sephadex LH - 20色谱相结合进行目标导向分离,HSCCC使用石油醚 - 乙酸乙酯 - 甲醇 - 水(1:4:0.8:4.2,v/v/v/v)、(1:4:1.8:3.2,v/v/v/v)和(1:4:2.3:2.7,v/v/v/v)作为溶剂系统,Sephadex LH - 20色谱用乙腈 - 甲醇(1:1,v/v)洗脱。纯化得到了5种苯乙基肉桂酰胺,N - 顺式阿魏酰章鱼胺(1);N - 反式对香豆酰章鱼胺(2),N - 反式阿魏酰章鱼胺(3),N - 反式对香豆酰酪胺(4)和N - 反式阿魏酰酪胺(5),以及4种高异黄酮,(3R) - 5,7 - 二羟基 - 3 - (2',4' - 二羟基苄基) - 色满 - 4 - 酮(6),(3R) - 5,7 - 二羟基 - 6 - 甲基 - 3 - (4' - 羟基苄基) - 色满 - 4 - 酮(7),(3R) - 5,7 - 二羟基 - 6 - 甲基 - 8 - 甲氧基 - 3 - (4' - 羟基苄基) - 色满 - 4 - 酮(8);和(3R) - 5,7 - 二羟基 - 6,8 - 二甲基 - 3 - (4' - 羟基苄基) - 色满 - 4 - 酮(9),纯度均超过98.5%,并通过紫外、质谱和(1)H核磁共振鉴定了它们的结构。值得注意的是,化合物2和4首次在黄精属中报道,而化合物1首次从百合科中获得。此外,评估了化合物1 - 9的α - 葡萄糖苷酶抑制活性,化合物2和4表现出较强的α - 葡萄糖苷酶抑制活性,IC50值分别为2.3和2.7μM。结果表明玉竹具有潜在的药用价值,该技术可广泛应用于从复杂基质中快速筛选和制备分离一组生物活性化合物。