Matsushita Kazuhito, Kent Matthew T, Vickers Andrew J, von Bodman Christian, Bernstein Melanie, Touijer Karim A, Coleman Jonathan A, Laudone Vincent T, Scardino Peter T, Eastham James A, Akin Oguz, Sandhu Jaspreet S
Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan.
BJU Int. 2015 Oct;116(4):577-83. doi: 10.1111/bju.13087. Epub 2015 Mar 30.
To build a predictive model of urinary continence recovery after radical prostatectomy (RP) that incorporates magnetic resonance imaging (MRI) parameters and clinical data.
We conducted a retrospective review of data from 2,849 patients who underwent pelvic staging MRI before RP from November 2001 to June 2010. We used logistic regression to evaluate the association between each MRI variable and continence at 6 or 12 months, adjusting for age, body mass index (BMI) and American Society of Anesthesiologists (ASA) score, and then used multivariable logistic regression to create our model. A nomogram was constructed using the multivariable logistic regression models.
In all, 68% (1,742/2,559) and 82% (2,205/2,689) regained function at 6 and 12 months, respectively. In the base model, age, BMI and ASA score were significant predictors of continence at 6 or 12 months on univariate analysis (P < 0.005). Among the preoperative MRI measurements, membranous urethral length, which showed great significance, was incorporated into the base model to create the full model. For continence recovery at 6 months, the addition of membranous urethral length increased the area under the curve (AUC) to 0.664 for the validation set, an increase of 0.064 over the base model. For continence recovery at 12 months, the AUC was 0.674, an increase of 0.085 over the base model.
Using our model, the likelihood of continence recovery increases with membranous urethral length and decreases with age, BMI and ASA score. This model could be used for patient counselling and for the identification of patients at high risk for urinary incontinence in whom to study changes in operative technique that improve urinary function after RP.
构建一个包含磁共振成像(MRI)参数和临床数据的前列腺癌根治术(RP)后尿失禁恢复的预测模型。
我们对2001年11月至2010年6月期间在RP术前接受盆腔分期MRI检查的2849例患者的数据进行了回顾性分析。我们使用逻辑回归评估每个MRI变量与6个月或12个月时尿失禁之间的关联,并对年龄、体重指数(BMI)和美国麻醉医师协会(ASA)评分进行校正,然后使用多变量逻辑回归创建我们的模型。使用多变量逻辑回归模型构建列线图。
总体而言,分别有68%(1742/2559)和82%(2205/2689)的患者在6个月和12个月时恢复了功能。在基础模型中,年龄、BMI和ASA评分在单变量分析中是6个月或12个月时尿失禁的显著预测因素(P<0.005)。在术前MRI测量中,具有重要意义的膜性尿道长度被纳入基础模型以创建完整模型。对于6个月时的尿失禁恢复,添加膜性尿道长度后,验证集的曲线下面积(AUC)增加到0.664,比基础模型增加了0.064。对于12个月时的尿失禁恢复,AUC为0.674,比基础模型增加了0.085。
使用我们的模型,尿失禁恢复的可能性随膜性尿道长度增加而增加,随年龄、BMI和ASA评分降低。该模型可用于患者咨询,并用于识别尿失禁高风险患者,以便研究改善RP术后尿功能的手术技术变化。