Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (P.R. China).
Angew Chem Int Ed Engl. 2015 Apr 13;54(16):4792-5. doi: 10.1002/anie.201411023. Epub 2015 Feb 12.
Solid-liquid-vapor interfaces dominated by the three-phase contact line, usually performing as the active center in reactions, are important in biological and industrial processes. In this contribution, we provide direct three-dimensional (3D) experimental evidence for the inside morphology of interfaces with either Cassie or Wenzel states at micron level using X-ray micro-computed tomography, which allows us to accurately "see inside" the morphological structures and quantitatively visualize their internal 3D fine structures and phases in intact samples. Furthermore, the in-depth measurements revealed that the liquid randomly and partly located on the top of protrusions on the natural and artificial superhydrophobic surfaces in Cassie regime, resulting from thermodynamically optimal minimization of the surface energy. These new findings are useful for the optimization of classical wetting theories and models, which should promote the surface scientific and technological developments.
固-液-气三相接触线主导的固-液-气三相界面通常作为反应的活性中心,在生物和工业过程中起着重要作用。在本研究中,我们使用 X 射线微计算机断层扫描技术,为具有 Cassie 或 Wenzel 状态的微米级界面的内部形态提供了直接的三维(3D)实验证据,这使我们能够准确地“看到内部”,并对完整样品的形态结构及其内部 3D 精细结构和相进行定量可视化。此外,深入的测量结果表明,在 Cassie 状态下,液体随机地部分位于自然和人工超疏水表面上的凸起顶部,这是由于表面能的热力学最优最小化。这些新发现对于优化经典润湿理论和模型非常有用,这将促进表面科学和技术的发展。