Suppr超能文献

湿滑文策尔态

Slippery Wenzel State.

机构信息

Department of Mechanical and Nuclear Engineering and Materials Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

出版信息

ACS Nano. 2015 Sep 22;9(9):9260-7. doi: 10.1021/acsnano.5b04151. Epub 2015 Aug 28.

Abstract

Enhancing the mobility of liquid droplets on rough surfaces is of great interest in industry, with applications ranging from condensation heat transfer to water harvesting to the prevention of icing and frosting. The mobility of a liquid droplet on a rough solid surface has long been associated with its wetting state. When liquid drops are sitting on the top of the solid textures and air is trapped underneath, they are in the Cassie state. When the drops impregnate the solid textures, they are in the Wenzel state. While the Cassie state has long been associated with high droplet mobility and the Wenzel state with droplet pinning, our work challenges this existing convention by showing that both Cassie and Wenzel state droplets can be highly mobile on nanotexture-enabled slippery rough surfaces. Our surfaces were developed by engineering hierachical nano- and microscale textures and infusing liquid lubricant into the nanotextures alone to create a highly slippery rough surface. We have shown that droplet mobility can be maintained even after the Cassie-to-Wenzel transition. Moreover, the discovery of the slippery Wenzel state allows us to assess the fundamental limits of the classical and recent Wenzel models at the highest experimental precision to date, which could not be achieved by any other conventional rough surface. Our results show that the classical Wenzel eq (1936) cannot predict the wetting behaviors of highly wetting liquids in the Wenzel state.

摘要

增强粗糙表面上液滴的流动性在工业中具有重要意义,其应用范围从冷凝传热到水收集,再到防止结冰和结霜。粗糙固体表面上液滴的流动性长期以来一直与其润湿状态有关。当液滴位于固体纹理的顶部并且空气被困在下面时,它们处于 Cassie 状态。当液滴浸渍固体纹理时,它们处于 Wenzel 状态。虽然 Cassie 状态长期以来一直与高液滴流动性相关,而 Wenzel 状态与液滴固定相关,但我们的工作通过表明 Cassie 和 Wenzel 状态的液滴在纳米纹理增强的滑粗糙表面上都可以具有高度的流动性,挑战了这一现有惯例。我们的表面是通过工程hierachical纳米和微尺度纹理并单独将液体润滑剂注入纳米纹理来开发的,以创建高度滑的粗糙表面。我们已经表明,即使在 Cassie 到 Wenzel 转变之后,液滴的流动性也可以保持。此外,滑 Wenzel 状态的发现使我们能够以迄今为止最高的实验精度评估经典和最近的 Wenzel 模型的基本限制,这是任何其他常规粗糙表面都无法实现的。我们的结果表明,经典的 Wenzel 方程(1936 年)不能预测高润湿性液体在 Wenzel 状态下的润湿行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验