Suppr超能文献

表面结构决定动态润湿性。

Surface structure determines dynamic wetting.

作者信息

Wang Jiayu, Do-Quang Minh, Cannon James J, Yue Feng, Suzuki Yuji, Amberg Gustav, Shiomi Junichiro

机构信息

Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.

Department of Mechanics, Linné Flow Centre, The Royal Institute of Technology, Stockholm, Sweden.

出版信息

Sci Rep. 2015 Feb 16;5:8474. doi: 10.1038/srep08474.

Abstract

Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure.

摘要

液体在表面的润湿现象在自然界中无处不在,近年来微加工和组装技术的进步使控制这一现象的能力不断提高。在这里,我们通过研究在具有几微米大小微观结构的固体基板上的铺展情况,确定了表面粗糙度如何影响部分润湿液滴的初始动态铺展。我们发现,粗糙度的影响可以根据接触线处能量耗散率的线摩擦系数来量化,并且这可以用一个简单的公式来描述,该公式涉及粗糙度的几何参数和平面表面的线摩擦系数。我们进一步确定了一个准则,以预测铺展是由这种表面粗糙度还是由液体惯性控制。我们的结果表明,通过设计表面结构有选择性地控制润湿行为是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8e/4329571/8f674fc13f39/srep08474-f1.jpg

相似文献

1
Surface structure determines dynamic wetting.
Sci Rep. 2015 Feb 16;5:8474. doi: 10.1038/srep08474.
2
Dynamic wetting and spreading and the role of topography.
J Phys Condens Matter. 2009 Nov 18;21(46):464122. doi: 10.1088/0953-8984/21/46/464122. Epub 2009 Oct 29.
3
Electrostatic cloaking of surface structure for dynamic wetting.
Sci Adv. 2017 Feb 24;3(2):e1602202. doi: 10.1126/sciadv.1602202. eCollection 2017 Feb.
4
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
5
Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces.
Langmuir. 2016 Feb 9;32(5):1299-308. doi: 10.1021/acs.langmuir.5b04557. Epub 2016 Jan 25.
6
Revealing How Topography of Surface Microstructures Alters Capillary Spreading.
Sci Rep. 2019 May 24;9(1):7787. doi: 10.1038/s41598-019-44243-x.
8
Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
J Colloid Interface Sci. 2014 Mar 15;418:8-19. doi: 10.1016/j.jcis.2013.12.010. Epub 2013 Dec 12.
9
Dynamic wetting at the nanoscale.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):033010. doi: 10.1103/PhysRevE.88.033010. Epub 2013 Sep 18.
10
Liquid nanodroplets spreading on chemically patterned surfaces.
Langmuir. 2006 May 9;22(10):4745-9. doi: 10.1021/la0531291.

引用本文的文献

1
Copper-PLLA-Based Biopolymer Wrinkle Structures for Enhanced Antibacterial Activity.
Polymers (Basel). 2025 Aug 8;17(16):2173. doi: 10.3390/polym17162173.
2
Electrohydrodynamic Jet Printing: Introductory Concepts and Considerations.
Small Sci. 2021 Nov 7;2(2):2100073. doi: 10.1002/smsc.202100073. eCollection 2022 Feb.
3
Impact of Sub-Nanoscale Surface Topography on Contact Line Profile: Insights from Coherence Scanning Interferometry.
Langmuir. 2025 Jan 14;41(1):917-925. doi: 10.1021/acs.langmuir.4c04227. Epub 2024 Dec 24.
4
Vibration sorting of small droplets on hydrophilic surface by asymmetric contact-line friction.
PNAS Nexus. 2022 Mar 16;1(2):pgac027. doi: 10.1093/pnasnexus/pgac027. eCollection 2022 May.
5
Predicting the splash of a droplet impinging on solid substrates.
Sci Rep. 2022 Mar 24;12(1):5093. doi: 10.1038/s41598-022-08852-3.
6
Detailed modelling of contact line motion in oscillatory wetting.
NPJ Microgravity. 2022 Jan 19;8(1):1. doi: 10.1038/s41526-021-00186-0.
7
Phase separation during blood spreading.
Sci Rep. 2021 Jun 3;11(1):11688. doi: 10.1038/s41598-021-90954-5.
8
The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
Sci Rep. 2019 Oct 21;9(1):15030. doi: 10.1038/s41598-019-51490-5.
9
Revealing How Topography of Surface Microstructures Alters Capillary Spreading.
Sci Rep. 2019 May 24;9(1):7787. doi: 10.1038/s41598-019-44243-x.
10
Droplet motions fill a periodic table.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4849-4854. doi: 10.1073/pnas.1817065116. Epub 2019 Feb 21.

本文引用的文献

1
Pancake bouncing on superhydrophobic surfaces.
Nat Phys. 2014 Jul;10(7):515-519. doi: 10.1038/nphys2980. Epub 2014 Jun 8.
2
Reducing the contact time of a bouncing drop.
Nature. 2013 Nov 21;503(7476):385-8. doi: 10.1038/nature12740.
3
Hierarchical patterns of three-dimensional block-copolymer films formed by electrohydrodynamic jet printing and self-assembly.
Nat Nanotechnol. 2013 Sep;8(9):667-75. doi: 10.1038/nnano.2013.160. Epub 2013 Aug 25.
4
Self-similarity of contact line depinning from textured surfaces.
Nat Commun. 2013;4:1492. doi: 10.1038/ncomms2482.
6
Initial spreading of low-viscosity drops on partially wetting surfaces.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):055301. doi: 10.1103/PhysRevE.85.055301. Epub 2012 May 3.
8
Universality in dynamic wetting dominated by contact-line friction.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):045302. doi: 10.1103/PhysRevE.85.045302. Epub 2012 Apr 16.
9
Wetting of flexible fibre arrays.
Nature. 2012 Feb 23;482(7386):510-3. doi: 10.1038/nature10779.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验