Wang Jiayu, Do-Quang Minh, Cannon James J, Yue Feng, Suzuki Yuji, Amberg Gustav, Shiomi Junichiro
Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
Department of Mechanics, Linné Flow Centre, The Royal Institute of Technology, Stockholm, Sweden.
Sci Rep. 2015 Feb 16;5:8474. doi: 10.1038/srep08474.
Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure.
液体在表面的润湿现象在自然界中无处不在,近年来微加工和组装技术的进步使控制这一现象的能力不断提高。在这里,我们通过研究在具有几微米大小微观结构的固体基板上的铺展情况,确定了表面粗糙度如何影响部分润湿液滴的初始动态铺展。我们发现,粗糙度的影响可以根据接触线处能量耗散率的线摩擦系数来量化,并且这可以用一个简单的公式来描述,该公式涉及粗糙度的几何参数和平面表面的线摩擦系数。我们进一步确定了一个准则,以预测铺展是由这种表面粗糙度还是由液体惯性控制。我们的结果表明,通过设计表面结构有选择性地控制润湿行为是可能的。