Steen Paul H, Chang Chun-Ti, Bostwick Joshua B
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853;
Center for Applied Mathematics, Cornell University, Ithaca, NY 14853.
Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4849-4854. doi: 10.1073/pnas.1817065116. Epub 2019 Feb 21.
Drawing parallels to the symmetry breaking of atomic orbitals used to explain the periodic table of chemical elements; here we introduce a periodic table of droplet motions, also based on symmetry breaking but guided by a recent droplet spectral theory. By this theory, higher droplet mode shapes are discovered and a wettability spectrometer is invented. Motions of a partially wetting liquid on a support have natural mode shapes, motions ordered by kinetic energy into the periodic table, each table characteristic of the spherical-cap drop volume and material parameters. For water on a support having a contact angle of about 60°, the first 35 predicted elements of the periodic table are discovered. Periodic tables are related one to another through symmetry breaking into a two-parameter family tree.
通过与用于解释化学元素周期表的原子轨道对称性破缺进行类比;在此我们引入了一个液滴运动周期表,同样基于对称性破缺,但由最近的液滴光谱理论所引导。依据该理论,发现了更高阶的液滴模式形状,并发明了一种润湿性光谱仪。部分润湿液体在支撑体上的运动具有自然模式形状,这些运动按动能排序进入周期表,每个周期表由球冠形液滴体积和材料参数所表征。对于在接触角约为60°的支撑体上的水,发现了周期表中预测的前35个元素。周期表通过对称性破缺相互关联,形成一个双参数族谱。