Carocha Victor, Soler Marçal, Hefer Charles, Cassan-Wang Hua, Fevereiro Pedro, Myburg Alexander A, Paiva Jorge A P, Grima-Pettenati Jacqueline
LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, BP 42617 Auzeville, 31326, Castanet Tolosan, France.
Instituto de Tecnologia de Química Biológica (ITQB), Biotecnologia de Células Vegetais, Av. da República, 2781-157, Oeiras, Portugal.
New Phytol. 2015 Jun;206(4):1297-313. doi: 10.1111/nph.13313. Epub 2015 Feb 12.
Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.
木质素是次生细胞壁的主要成分,它阻碍了木材在工业用途上的优化加工。最近获得的巨桉基因组序列使得对苯丙烷途径木质素分支特有的11个蛋白质家族的编码基因进行全面分析成为可能,并能鉴定出那些主要参与木质部发育木质化的基因。我们对木质素基因家族的推定成员进行了全基因组鉴定,随后进行了比较系统发育研究,重点关注从其他物种中功能已明确的基因推断出的真正进化枝。利用RNA测序和微流控实时定量PCR(RT-qPCR)表达数据来研究这些基因的发育和环境响应表达模式。系统发育分析表明,38个巨桉基因位于真正的木质化进化枝中。与其他植物物种相比,四个多基因家族(莽草酸O-羟基肉桂酰转移酶(HCT)、对香豆酸3-羟化酶(C3H)、咖啡酸/5-羟基阿魏酸O-甲基转移酶(COMT)和苯丙氨酸解氨酶(PAL))通过串联基因复制而扩增。38个基因中的17个在高度木质化的组织中表现出强烈的、优先的表达,可能代表了巨桉的核心木质化工具箱。对全球种植最广泛的硬木作物巨桉中参与木质素生物合成的主要基因的鉴定,为开发具有更高加工品质的树木品种的生物技术方法奠定了基础。