Plasencia Anna, Soler Marçal, Dupas Annabelle, Ladouce Nathalie, Silva-Martins Guilherme, Martinez Yves, Lapierre Catherine, Franche Claudine, Truchet Isabelle, Grima-Pettenati Jacqueline
UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France.
FRAIB, CNRS, Cell Imaging Plateform, Castanet Tolosan, France.
Plant Biotechnol J. 2016 Jun;14(6):1381-93. doi: 10.1111/pbi.12502. Epub 2015 Nov 18.
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.
桉树具有巨大的经济重要性,是全球种植最多的用于制浆造纸、木材和生物能源的硬木。最近公布的巨桉基因组序列指出了许多可能参与次生生长、木材形成或特定谱系生物合成途径的新候选基因。然而,迄今为止,可用的桉树转化系统繁琐、耗时且效率低下,阻碍了对这些基因的功能表征。为了克服这一限制,我们开发了一种快速、可靠且高效的方案,使用荧光标记获得并轻松检测共转化的巨桉毛状根,平均效率为62%。我们建立了在体外培养离体根以及使复合植株驯化的条件,并验证了毛状根的形态和维管系统解剖结构与野生型相似。我们进一步证明,共转化的毛状根适用于中等通量的功能研究,例如能够进行蛋白质亚细胞定位、通过RT-qPCR和启动子表达研究基因表达模式,以及调节内源基因表达。肉桂酰辅酶A还原酶1(EgCCR1)基因是木质素生物合成中的关键酶,下调该基因导致转基因根的木质素水平降低且细胞壁变薄。该基因被用作概念验证,以证明使用组织化学、转录组学和生化方法可以在转基因毛状根中阐明参与次生细胞壁生物合成和木材形成的基因的功能。本文所述方法恰逢其时,因为它将加速基因组的基因挖掘,以用于基础研究和工业目的。