Matteini Federico, Dubrovskii Vladimir G, Rüffer Daniel, Tütüncüoğlu Gözde, Fontana Yannik, Morral Anna Fontcuberta I
Laboratoire Matériaux Semiconducteurs, École Politechnique Fédérale de Lausanne, Switzerland.
Nanotechnology. 2015 Mar 13;26(10):105603. doi: 10.1088/0957-4484/26/10/105603. Epub 2015 Feb 17.
Nanowire diameter has a dramatic effect on the absorption cross-section in the optical domain. The maximum absorption is reached for ideal nanowire morphology within a solar cell device. As a consequence, understanding how to tailor the nanowire diameter and density is extremely important for high-efficient nanowire-based solar cells. In this work, we investigate mastering the diameter and density of self-catalyzed GaAs nanowires on Si(111) substrates by growth conditions using the self-assembly of Ga droplets. We introduce a new paradigm of the characteristic nucleation time controlled by group III flux and temperature that determine diameter and length distributions of GaAs nanowires. This insight into the growth mechanism is then used to grow nanowire forests with a completely tailored diameter-density distribution. We also show how the reflectivity of nanowire arrays can be minimized in this way. In general, this work opens new possibilities for the cost-effective and controlled fabrication of the ensembles of self-catalyzed III-V nanowires for different applications, in particular in next-generation photovoltaic devices.
纳米线直径对光学领域的吸收截面有显著影响。对于太阳能电池器件内理想的纳米线形态,可实现最大吸收。因此,了解如何调整纳米线直径和密度对于高效的基于纳米线的太阳能电池极为重要。在这项工作中,我们通过使用Ga液滴的自组装,研究了通过生长条件来控制Si(111)衬底上自催化GaAs纳米线的直径和密度。我们引入了一种由III族通量和温度控制特征成核时间的新范式,该范式决定了GaAs纳米线的直径和长度分布。然后,这种对生长机制的深入理解被用于生长具有完全定制的直径-密度分布的纳米线阵列。我们还展示了如何通过这种方式将纳米线阵列反射率降至最低。总体而言,这项工作为以具有成本效益且可控的方式制造用于不同应用的自催化III-V族纳米线集合开辟了新的可能性,特别是在下一代光伏器件中。