Suppr超能文献

使用时间序列基序发现技术在心电图伪差中进行稳健且准确的异常检测。

Robust and accurate anomaly detection in ECG artifacts using time series motif discovery.

作者信息

Sivaraks Haemwaan, Ratanamahatana Chotirat Ann

机构信息

Department of Computer Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.

出版信息

Comput Math Methods Med. 2015;2015:453214. doi: 10.1155/2015/453214. Epub 2015 Jan 22.

Abstract

Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods.

摘要

心电图(ECG)异常检测是一种用于检测不同心跳的重要技术,有助于在诊断过程之前识别异常心电图。目前可用的心电图异常检测方法,从学术研究到商业心电图机,仍然存在较高的误报率,因为这些方法无法区分心电图伪差和真实心电图信号,特别是在形状和/或频率方面与心电图信号相似的心电图伪差。这个问题导致医生高度警惕,非专业人员存在误判风险。因此,这项工作提出了一种新颖的异常检测技术,该技术在存在心电图伪差的情况下具有高度的鲁棒性和准确性,能够有效降低误报率。我们的设计中利用了心脏病专家的专业知识和基序发现技术。此外,算法的每一步都符合心脏病专家的解释。我们的方法可用于单导联心电图和多导联心电图。我们在真实心电图数据集上的实验结果由心脏病专家进行解释和评估。我们提出的算法在检测准确率(AoD)、灵敏度、特异性和阳性预测值方面大多能达到100%,误报率为0%。结果表明,与有竞争力的异常检测方法相比,我们提出的方法对伪差具有高度的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b48/4320938/a2422a229e3b/CMMM2015-453214.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验