Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
Biotechnol Adv. 2015 Nov 1;33(6 Pt 2):1162-76. doi: 10.1016/j.biotechadv.2015.02.003. Epub 2015 Feb 14.
In this critical review, we outline various covalent and non-covalent approaches for the functionalization of iron oxide nanoparticles (IONPs). Tuning the surface chemistry and design of magnetic nanoparticles are described in relation to their applicability in advanced medical technologies and biotechnologies including magnetic resonance imaging (MRI) contrast agents, targeted drug delivery, magnetic separations and immobilizations of proteins, enzymes, antibodies, targeting agents and other biosubstances. We review synthetic strategies for the controlled preparation of IONPs modified with frequently used functional groups including amine, carboxyl and hydroxyl groups as well as the preparation of IONPs functionalized with other species, e.g., epoxy, thiol, alkane, azide, and alkyne groups. Three main coupling strategies for linking IONPs with active agents are presented: (i) chemical modification of amine groups on the surface of IONPs, (ii) chemical modification of bioactive substances (e.g. with fluorescent dyes), and (iii) the activation of carboxyl groups mainly for enzyme immobilization. Applications for drug delivery using click chemistry linking or biodegradable bonds are compared to non-covalent methods based on polymer modified condensed magnetic nanoclusters. Among many challenges, we highlight the specific surface engineering allowing both therapeutic and diagnostic applications (theranostics) of IONPs and magnetic/metallic hybrid nanostructures possessing a huge potential in biocatalysis, green chemistry, magnetic bioseparations and bioimaging.
在这篇评论中,我们概述了各种用于氧化铁纳米粒子 (IONP) 功能化的共价和非共价方法。根据其在先进医疗技术和生物技术中的应用,如磁共振成像 (MRI) 造影剂、靶向药物递送、磁性分离和蛋白质、酶、抗体、靶向剂和其他生物物质的固定化,描述了对磁性纳米粒子表面化学和设计的调整。我们综述了用于制备经常用功能基团(如胺基、羧基和羟基)修饰的 IONP 的合成策略,以及制备经其他基团(如环氧基、巯基、烷烃、叠氮基和炔基)修饰的 IONP 的方法。介绍了三种将 IONP 与活性物质连接的主要偶联策略:(i) IONP 表面胺基的化学修饰,(ii) 生物活性物质的化学修饰(例如,与荧光染料),和 (iii) 主要用于酶固定化的羧基的活化。比较了基于点击化学连接或可生物降解键的药物递送应用与基于聚合物修饰的凝聚磁纳米簇的非共价方法。在许多挑战中,我们强调了特定的表面工程,允许 IONP 和具有生物催化、绿色化学、磁性生物分离和生物成像巨大潜力的磁性/金属混合纳米结构的治疗和诊断应用(治疗诊断学)。