Guess Martin G, Barthel Kristen K B, Harrison Brooke C, Leinwand Leslie A
Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America.
PLoS One. 2015 Feb 17;10(2):e0118229. doi: 10.1371/journal.pone.0118229. eCollection 2015.
microRNAs (miRNAs) are short non-coding RNAs that can mediate changes in gene expression and are required for the formation of skeletal muscle (myogenesis). With the goal of identifying novel miRNA biomarkers of muscle disease, we profiled miRNA expression using miRNA-seq in the gastrocnemius muscles of dystrophic mdx4cv mice. After identifying a down-regulation of the miR-30 family (miR-30a-5p, -30b, -30c, -30d and -30e) when compared to C57Bl/6 (WT) mice, we found that overexpression of miR-30 family miRNAs promotes differentiation, while inhibition restricts differentiation of myoblasts in vitro. Additionally, miR-30 family miRNAs are coordinately down-regulated during in vivo models of muscle injury (barium chloride injection) and muscle disuse atrophy (hindlimb suspension). Using bioinformatics tools and in vitro studies, we identified and validated Smarcd2, Snai2 and Tnrc6a as miR-30 family targets. Interestingly, we show that by targeting Tnrc6a, miR-30 family miRNAs negatively regulate the miRNA pathway and modulate both the activity of muscle-specific miR-206 and the levels of protein synthesis. These findings indicate that the miR-30 family may be an interesting biomarker of perturbed muscle homeostasis and muscle disease.
微小RNA(miRNA)是短链非编码RNA,可介导基因表达变化,是骨骼肌形成(肌生成)所必需的。为了鉴定肌肉疾病的新型miRNA生物标志物,我们使用miRNA测序分析了营养不良性mdx4cv小鼠腓肠肌中的miRNA表达。与C57Bl/6(野生型)小鼠相比,我们发现miR-30家族(miR-30a-5p、-30b、-30c、-30d和-30e)表达下调,我们还发现miR-30家族miRNA的过表达促进分化,而抑制则限制体外成肌细胞的分化。此外,在肌肉损伤(氯化钡注射)和肌肉废用性萎缩(后肢悬吊)的体内模型中,miR-30家族miRNA协同下调。通过生物信息学工具和体外研究,我们鉴定并验证了Smarcd2、Snai2和Tnrc6a是miR-30家族的靶标。有趣的是,我们发现通过靶向Tnrc6a,miR-30家族miRNA负向调节miRNA途径,并调节肌肉特异性miR-206的活性和蛋白质合成水平。这些发现表明,miR-30家族可能是肌肉稳态紊乱和肌肉疾病的一个有趣的生物标志物。