Tian Yin, Fu Jia, Zhang Yi, Cao Kecheng, Bai Chiyao, Wang Dongqi, Li Shoujian, Xue Ying, Ma Lijian, Zheng Chong
College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
Phys Chem Chem Phys. 2015 Mar 21;17(11):7214-23. doi: 10.1039/c4cp05508j.
In numerous reports on selective solid-phase extraction (SPE) of uranium, the extraction of uranium is generally accepted as a direct coordination of the ligands on the solid matrix with the uranyl, in which the critical effect of the hydration shell on the uranyl is neglected. The related mechanism in the extraction process remains unclear. Herein, the detailed calculation of activation energy and the geometry of the identified transition states reveal that the uranium extraction by a newly-synthesized urea-functionalized graphite oxide (Urea-GO) is in essence an exchange process between the ligands on Urea-GO and the coordinated water molecules in the first hydration shell of the uranyl. Moreover, we demonstrate that it is the ketone oxygen in the urea ligand to displace the coordinated water molecule of uranyl due to its stronger bonding ability and lower steric-hindrance, whereas the nitrogen atom in the same ligand is proved to be an electron donor that enables the oxygen atom to have stronger affinity for uranium through electron delocalization effects evaluated on the basis of calculations of the second-order interaction energy between donor and acceptor orbitals. We therefore propose a new ligand-exchange mechanism for the SPE process. This study advances the fundamental understanding of uranium extraction, and provides theoretical and practical guidance on ligand design for selective complexation of uranium(VI) and other metal ions in aqueous solution. Finally, the effect of nitrate ions on the extraction of uranyl was successfully explained based on the experimental and theoretical study.
在众多关于铀的选择性固相萃取(SPE)的报告中,铀的萃取通常被认为是固体基质上的配体与铀酰的直接配位,其中忽略了水合壳对铀酰的关键影响。萃取过程中的相关机制仍不清楚。在此,对活化能和已识别过渡态几何结构的详细计算表明,新合成的尿素功能化氧化石墨烯(尿素-GO)对铀的萃取本质上是尿素-GO上的配体与铀酰第一水合壳中的配位水分子之间的交换过程。此外,我们证明,由于其更强的键合能力和更低的空间位阻,尿素配体中的酮氧取代了铀酰的配位水分子,而同一配体中的氮原子被证明是一个电子供体,通过基于供体和受体轨道之间二阶相互作用能计算评估的电子离域效应,使氧原子对铀具有更强的亲和力。因此,我们提出了一种新的SPE过程配体交换机制。本研究推进了对铀萃取的基本理解,并为水溶液中铀(VI)和其他金属离子的选择性络合配体设计提供了理论和实践指导。最后,基于实验和理论研究成功解释了硝酸根离子对铀酰萃取的影响。