Magis David
Department of Education (B32), University of Liège, Boulevard du Rectorat 5, 4000, Liège, Belgium.
KU Leuven, Leuven, Belgium.
Psychometrika. 2016 Mar;81(1):184-200. doi: 10.1007/s11336-015-9443-3. Epub 2015 Feb 18.
This paper focuses on the computation of asymptotic standard errors (ASE) of ability estimators with dichotomous item response models. A general framework is considered, and ability estimators are defined from a very restricted set of assumptions and formulas. This approach encompasses most standard methods such as maximum likelihood, weighted likelihood, maximum a posteriori, and robust estimators. A general formula for the ASE is derived from the theory of M-estimation. Well-known results are found back as particular cases for the maximum and robust estimators, while new ASE proposals for the weighted likelihood and maximum a posteriori estimators are presented. These new formulas are compared to traditional ones by means of a simulation study under Rasch modeling.
本文聚焦于二分项目反应模型能力估计量的渐近标准误差(ASE)的计算。考虑了一个通用框架,能力估计量是根据一组非常有限的假设和公式定义的。这种方法涵盖了大多数标准方法,如最大似然法、加权似然法、最大后验法和稳健估计量。ASE的通用公式是从M估计理论推导出来的。作为最大估计量和稳健估计量的特殊情况,可以得到一些著名的结果,同时还给出了加权似然法和最大后验估计量的新的ASE公式。在Rasch模型下通过模拟研究将这些新公式与传统公式进行了比较。