Kálmán Ferenc Krisztián, Végh Andrea, Regueiro-Figueroa Martín, Tóth Éva, Platas-Iglesias Carlos, Tircsó Gyula
Department of Inorganic and Analytical Chemistry, University of Debrecen , Egyetem tér 1, H-4010 Debrecen, Hungary.
Inorg Chem. 2015 Mar 2;54(5):2345-56. doi: 10.1021/ic502966m. Epub 2015 Feb 18.
The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the Ln(octapa)(H2O) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the Gd(octapa)(H2O) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).
无环配体八聚(4 - )(H4octapa = 6,6'-((乙烷 - 1,2 - 二基双((羧甲基)氮杂二基))双(亚甲基))二吡啶甲酸)在水溶液中与Ln(3+)离子形成稳定的配合物。使用弛豫法测定的与La(3+)、Gd(3+)和Lu(3+)形成的配合物的稳定常数分别为log KLaL = 20.13(7)、log KGdL = 20.23(4)和log KLuL = 20.49(5)(I = 0.15 M NaCl)。与二价金属离子如Zn(2+)和Cu(2+)形成的配合物也具有高稳定常数(log KZnL = 18.91(3)和log KCuL = 22.08(2))。紫外可见光谱和核磁共振光谱研究以及密度泛函理论(DFT)计算表明,配体与Zn(2+)和Cu(2+)形成六齿配位,配体乙酸酯基团的供体原子未配位。由于配体的八齿配位和配位水分子的存在,与Ln(3+)离子形成的配合物为九配位。与Ln(3+)离子形成的配合物的稳定常数在整个镧系元素系列中变化不显著。DFT研究表明,这是4f周期内结合能增加(有助于配合物稳定性增加)与Ln(3+)离子水合自由能绝对值平行增加之间微妙平衡的结果。对于[Ln(octapa)(H2O)] - 配合物,配体的胺氮原子与Ln(3+)离子之间的相互作用沿镧系元素系列减弱,因此增加的静电相互作用无法克服不断增加的水合能。在Cu(2+)存在下对[Gd(octapa)(H2O)] - 配合物解离的详细动力学研究表明,在pH 7.4和生理[Cu(2+)]浓度(1 μM)下,金属辅助途径是配合物解离的主要原因。