Dong Huiru, Robison Leslie L, Leisenring Wendy M, Martin Leah J, Armstrong Gregory T, Yasui Yutaka
Am J Epidemiol. 2015 Apr 1;181(7):532-40. doi: 10.1093/aje/kwu289. Epub 2015 Feb 17.
Cumulative incidence has been widely used to estimate the cumulative probability of developing an event of interest by a given time, in the presence of competing risks. When it is of interest to measure the total burden of recurrent events in a population, however, the cumulative incidence method is not appropriate because it considers only the first occurrence of the event of interest for each individual in the analysis: Subsequent occurrences are not included. Here, we discuss a straightforward and intuitive method termed "mean cumulative count," which reflects a summarization of all events that occur in the population by a given time, not just the first event for each subject. We explore the mathematical relationship between mean cumulative count and cumulative incidence. Detailed calculation of mean cumulative count is described by using a simple hypothetical example, and the computation code with an illustrative example is provided. Using follow-up data from January 1975 to August 2009 collected in the Childhood Cancer Survivor Study, we show applications of mean cumulative count and cumulative incidence for the outcome of subsequent neoplasms to demonstrate different but complementary information obtained from the 2 approaches and the specific utility of the former.
在存在竞争风险的情况下,累积发病率已被广泛用于估计到给定时间发生感兴趣事件的累积概率。然而,当想要衡量人群中复发事件的总负担时,累积发病率方法并不合适,因为在分析中它只考虑每个个体首次发生感兴趣的事件:后续发生的事件不包括在内。在此,我们讨论一种直接且直观的方法,称为“平均累积计数”,它反映了到给定时间在人群中发生的所有事件的汇总,而不仅仅是每个个体的首次事件。我们探讨了平均累积计数与累积发病率之间的数学关系。通过一个简单的假设示例描述了平均累积计数的详细计算,并提供了带有说明性示例的计算代码。利用儿童癌症幸存者研究中收集的1975年1月至2009年8月的随访数据,我们展示了平均累积计数和累积发病率在后续肿瘤结局方面的应用,以说明从这两种方法获得的不同但互补的信息以及前者的特定效用。