Suppr超能文献

使用计算机断层扫描预测国际妇产科联盟III期或IV期卵巢癌患者的手术结果:预测模型的系统评价

Predicting surgical outcome in patients with International Federation of Gynecology and Obstetrics stage III or IV ovarian cancer using computed tomography: a systematic review of prediction models.

作者信息

Rutten Marianne Jetske, van de Vrie Roelien, Bruining Annemarie, Spijkerboer Anje M, Mol Ben Willem, Kenter Gemma Georgette, Buist Marrije Renate

机构信息

*Department of Obstetrics and Gynaecology, Centre for Gynaecologic Oncology Amsterdam, Academic Medical Centre; †Department of Radiology, Anthony van Leeuwenhoek Hospital; and ‡Department of Radiology, Academic Medical Centre, Amsterdam, the Netherlands.

出版信息

Int J Gynecol Cancer. 2015 Mar;25(3):407-15. doi: 10.1097/IGC.0000000000000368.

Abstract

OBJECTIVE

Maximal cytoreduction to no residual disease is an important predictor of prognosis in patients with advanced-stage epithelial ovarian cancer. Preoperative prediction of outcome of surgery should guide treatment decisions, for example, primary debulking or neoadjuvant chemotherapy followed by interval debulking surgery. The objective of this study was to systematically review studies evaluating computed tomography imaging based models predicting the amount of residual tumor after cytoreductive surgery for advanced-stage epithelial ovarian cancer.

METHODS

We systematically searched the literature for studies investigating multivariable models that predicted the amount of residual disease after cytoreductive surgery in advanced-stage epithelial ovarian cancer using computed tomography imaging. Detected studies were scored for quality and classified as model derivation or validation studies. We summarized their performance in terms of discrimination when possible.

RESULTS

We identified 11 studies that described 13 models. The 4 models that were externally validated all had a poor discriminative capacity (sensitivity, 15%-79%; specificity, 32%-64%). The only internal validated model had an area under the receiver operating characteristic curve of 0.67. Peritoneal thickening, mesenterial and diaphragm disease, and ascites were most often used as predictors in the final models. We did not find studies that assessed the impact of prediction model on outcomes.

CONCLUSIONS

Currently, there are no external validated studies with a good predictive performance for residual disease. Studies of better quality are needed, especially studies that focus on predicting any residual disease after surgery.

摘要

目的

最大程度地减瘤至无残留病灶是晚期上皮性卵巢癌患者预后的重要预测指标。手术结局的术前预测应指导治疗决策,例如,初始肿瘤细胞减灭术或新辅助化疗后行中间型肿瘤细胞减灭术。本研究的目的是系统评价基于计算机断层扫描成像模型预测晚期上皮性卵巢癌肿瘤细胞减灭术后残留肿瘤量的研究。

方法

我们系统检索文献,查找使用计算机断层扫描成像研究预测晚期上皮性卵巢癌肿瘤细胞减灭术后残留病灶量的多变量模型的研究。对检测到的研究进行质量评分,并分类为模型推导或验证研究。我们尽可能总结它们在区分能力方面的表现。

结果

我们确定了11项描述13种模型的研究。4项经过外部验证的模型均具有较差的区分能力(敏感性为15% - 79%;特异性为32% - 64%)。唯一经过内部验证的模型的受试者工作特征曲线下面积为0.67。腹膜增厚、肠系膜和膈肌病变以及腹水是最终模型中最常使用的预测指标。我们未找到评估预测模型对结局影响的研究。

结论

目前,尚无对残留病灶具有良好预测性能的外部验证研究。需要开展质量更高的研究,尤其是专注于预测术后任何残留病灶的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验