IEEE Trans Image Process. 2015 Jan;24(1):457-70. doi: 10.1109/TIP.2014.2380351.
We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.
我们提出了一种简单而有效的基于结构引导的统计纹理独特性方法来进行显著区域检测。我们的方法使用多层方法从尺度角度分析自然图像的结构和纹理特征,将其作为显著区域检测的重要特征。为了表示结构特征,我们使用结构化的图像元素来抽象图像,并提取旋转不变的基于邻域的纹理表示,通过单个纹理模式来描述每个元素。然后,我们学习一组具有代表性的纹理原子来进行稀疏纹理建模,并构建一个统计纹理独特性矩阵来确定每层中所有代表性纹理原子对之间的独特性。最后,我们根据纹理原子的出现概率及其各自的统计纹理独特性为每个层确定显著图,并将它们融合以计算最终的显著图。使用四个公共数据集和多种性能评估指标的实验结果表明,与现有的显著区域检测方法相比,我们的方法提供了有前途的结果。