Lee Dahee, Kim Won Chul, Charidimou Andreas, Song Min
Department of Library and Information Science, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
Stroke Research Group, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK.
J Alzheimers Dis. 2015;45(4):1207-22. doi: 10.3233/JAD-142688.
During the last 30 years, Alzheimer's disease (AD) research, aiming to understand the pathophysiology and to improve the diagnosis, management, and, ultimately, treatment of the disease, has grown rapidly. Recently, some studies have used simple bibliometric approaches to investigate research trends and advances in the field. In our study, we map the AD research field by applying entitymetrics, an extended concept of bibliometrics, to capture viewpoints of indexers, authors, or citers. Using the full-text documents with reference section retrieved from PubMed Central, we constructed four types of networks: MeSH-MeSH (MM), MeSH-Citation-MeSH (MCM), Keyphrase-Keyphrase (KK), and Keyphrase-Citation-Keyphrase (KCK) networks. The working hypothesis was that MeSH, keyphrase, and citation relationships reflect the views of indexers, authors, and/or citers, respectively. In comparative network and centrality analysis, we found that those views are different: indexers emphasize amyloid-related entities, including methodological terms, while authors focus on specific biomedical terms, including clinical syndromes. The more dense and complex networks of citing relationships reported in our study, to a certain extent reflect the impact of basic science discoveries in AD. However, none of these could have had clinical relevance for patients without close collaboration between investigators in translational and clinical-related AD research (reflected in indexers and authors' networks). Our approach has relevance for researches in the field, since they can identify relations between different developments which are not otherwise evident. These developments combined with advanced visualization techniques, might aid the discovery of novel interactions between genes and pathways or used as a resource to advance clinical drug development.
在过去30年里,旨在了解阿尔茨海默病(AD)病理生理学并改善其诊断、管理以及最终治疗方法的研究迅速发展。最近,一些研究采用简单的文献计量方法来探究该领域的研究趋势和进展。在我们的研究中,我们通过应用实体计量学(文献计量学的扩展概念)来描绘AD研究领域,以获取索引编制者、作者或引用者的观点。利用从PubMed Central检索到的带有参考文献部分的全文文档,我们构建了四种类型的网络:医学主题词表-医学主题词表(MM)、医学主题词表-引文-医学主题词表(MCM)、关键词-关键词(KK)和关键词-引文-关键词(KCK)网络。我们的工作假设是,医学主题词表、关键词和引文关系分别反映了索引编制者、作者和/或引用者的观点。在比较网络和中心性分析中,我们发现这些观点有所不同:索引编制者强调与淀粉样蛋白相关的实体,包括方法学术语,而作者则关注特定的生物医学术语,包括临床综合征。我们研究中报告的引用关系网络更加密集和复杂,在一定程度上反映了基础科学发现对AD的影响。然而,如果转化医学和临床相关AD研究的研究者之间没有密切合作(反映在索引编制者和作者的网络中),这些发现对患者都不会具有临床相关性。我们的方法与该领域的研究相关,因为它们可以识别不同发展之间原本不明显的关系。这些发展与先进的可视化技术相结合,可能有助于发现基因与通路之间的新型相互作用,或用作推进临床药物开发的资源。
J Med Libr Assoc. 2003-1
BMC Complement Altern Med. 2003-7-7
J Clin Ultrasound. 2009
Environ Mol Mutagen. 2006-5
Inform Health Soc Care. 2015
J Am Med Inform Assoc. 2015-11
J Alzheimers Dis Rep. 2024-1-29
PeerJ Comput Sci. 2019-11-18
BMC Bioinformatics. 2017-5-31
Science. 2016-8-26