Suppr超能文献

大规模六边形石墨烯纳米片的电子结构与芳香性

Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

作者信息

Hu Wei, Lin Lin, Yang Chao, Yang Jinlong

机构信息

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

J Chem Phys. 2014 Dec 7;141(21):214704. doi: 10.1063/1.4902806.

Abstract

With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

摘要

借助最近开发的SIESTA-pole(西班牙数千原子电子模拟计划)-PEXSI(极点展开与选择反演)方法[L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)],我们进行了Kohn-Sham密度泛函理论计算,以研究氢钝化的、包含多达11700个原子的六边形石墨烯纳米片(GNFs)的稳定性和电子结构。我们发现,GNFs的电子性质,包括它们的内聚能、边缘形成能、最高占据分子轨道-最低未占据分子轨道能隙、边缘态和芳香性,敏感地依赖于边缘类型(扶手椅型石墨烯纳米片(ACGNFs)和锯齿型石墨烯纳米片(ZZGNFs))、尺寸和电子数量。我们观察到,由于ACGNFs中边缘诱导的应变效应,大规模ACGNFs的边缘形成能随着尺寸的增加而降低。由于ZZGNFs中存在许多边缘态,这种趋势在ZZGNFs中并不成立。我们发现,GNFs的能隙E(g)都相对于1/L呈线性衰减,其中L是GNF的尺寸。但随着尺寸的增加,ZZGNFs表现出更多局域化的边缘态。我们认为这些态的存在使它们的能隙下降得更快。特别是,当L大于6.40 nm时,我们发现ZZGNFs表现出金属特性。此外,我们发现GNFs的芳香结构似乎仅取决于系统是否有4N或4N + 2个电子,其中N是整数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验