Suppr超能文献

对5个基因的多个CpG进行定量检测,确定了区分高级别和低级别宫颈上皮内瘤变的CpG甲基化谱。

Quantitative survey of multiple CpGs from 5 genes identifies CpG methylation panel discriminating between high- and low-grade cervical intraepithelial neoplasia.

作者信息

Tian Xiaoyi, Chen Di, Zhang Ran, Zhou Jun, Peng Xiaozhong, Yang Xiaolin, Zhang Xiuru, Zheng Zhi

机构信息

Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, No. 5 Dong Dan San Tiao, Beijing, 100005 China.

Department of Pathology, Aerospace Central Hospital, No. 15 Yuquan Road, Beijing, 100049 China.

出版信息

Clin Epigenetics. 2015 Jan 22;7(1):4. doi: 10.1186/s13148-014-0037-1. eCollection 2015.

Abstract

BACKGROUND

Studies of methylation biomarkers for cervical cancer often involved only few randomly selected CpGs per candidate gene analyzed by methylation-specific PCR-based methods, with often inconsistent results from different laboratories. We evaluated the role of different CpGs from multiple genes as methylation biomarkers for high-grade cervical intraepithelial neoplasia (CIN).

RESULTS

We applied a mass spectrometry-based platform to survey the quantitative methylation levels of 34 CpG units from SOX1, PAX1, NKX6-1, LMX1A, and ONECUT1 genes in 100 cervical formalin-fixed paraffin-embedded (FFPE) tissues. We then used nonparametric statistics and Random Forest algorithm to rank significant CpG methylations and support vector machine with 10-fold cross validation and 200 times bootstrap resampling to build a predictive model separating CIN II/III from CIN I/normal subjects. We found only select CpG units showed significant differences in methylation between CIN II/III and CIN I/normal groups, while mean methylation levels per gene were similar between the two groups for each gene except PAX1. An optimal classification model involving five CpG units from SOX1, PAX1, NKX6-1, and LMX1A achieved 81.2% specificity, 80.4% sensitivity, and 80.8% accuracy.

CONCLUSIONS

Our study suggested that during CIN development, the methylation of CpGs within CpG islands is not uniform, with varying degrees of significance as biomarkers. Our study emphasizes the importance of not only methylated marker genes but also specific CpGs for identifying high-grade CINs. The 5-CpG classification model provides a promising biomarker panel for the early detection of cervical cancer.

摘要

背景

宫颈癌甲基化生物标志物的研究通常仅通过基于甲基化特异性PCR的方法,对每个候选基因随机选择少数几个CpG进行分析,不同实验室的结果往往不一致。我们评估了多个基因中不同CpG作为高级别宫颈上皮内瘤变(CIN)甲基化生物标志物的作用。

结果

我们应用基于质谱的平台,检测了100例宫颈福尔马林固定石蜡包埋(FFPE)组织中SOX1、PAX1、NKX6-1、LMX1A和ONECUT1基因的34个CpG单位的定量甲基化水平。然后,我们使用非参数统计和随机森林算法对显著的CpG甲基化进行排序,并使用10倍交叉验证和200次自助重采样的支持向量机来构建一个预测模型,以区分CIN II/III与CIN I/正常受试者。我们发现,只有特定的CpG单位在CIN II/III和CIN I/正常组之间的甲基化存在显著差异,而除PAX1外,每组中每个基因的平均甲基化水平在两组之间相似。一个包含来自SOX1、PAX1、NKX6-1和LMX1A的五个CpG单位的最佳分类模型实现了81.2%的特异性、80.4%的敏感性和80.8%的准确性。

结论

我们的研究表明,在CIN发展过程中,CpG岛内CpG的甲基化并不均匀,作为生物标志物的意义程度不同。我们的研究强调了不仅甲基化标记基因,而且特定CpG对于识别高级别CIN的重要性。5-CpG分类模型为宫颈癌的早期检测提供了一个有前景的生物标志物组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8092/4334603/5052457f12a0/13148_2014_37_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验