Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA.
Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA.
Science. 2015 Feb 20;347(6224):882-6. doi: 10.1126/science.aaa1823.
Macromolecular function is rooted in energy landscapes, where sequence determines not a single structure but an ensemble of conformations. Hence, evolution modifies a protein's function by altering its energy landscape. Here, we recreate the evolutionary pathway between two modern human oncogenes, Src and Abl, by reconstructing their common ancestors. Our evolutionary reconstruction combined with x-ray structures of the common ancestor and pre-steady-state kinetics reveals a detailed atomistic mechanism for selectivity of the successful cancer drug Gleevec. Gleevec affinity is gained during the evolutionary trajectory toward Abl and lost toward Src, primarily by shifting an induced-fit equilibrium that is also disrupted in the clinical T315I resistance mutation. This work reveals the mechanism of Gleevec specificity while offering insights into how energy landscapes evolve.
大分子功能源于能量景观,序列决定的不是单一结构,而是一组构象。因此,进化通过改变蛋白质的能量景观来改变其功能。在这里,我们通过重建它们的共同祖先来重现两种现代人类致癌基因 Src 和 Abl 之间的进化途径。我们的进化重建结合共同祖先的 X 射线结构和预稳态动力学揭示了成功的癌症药物格列卫的选择性的详细原子机制。格列卫的亲和力是在向 Abl 进化的过程中获得的,而在向 Src 进化的过程中则失去了,主要是通过改变一个诱导契合平衡,该平衡也在临床 T315I 耐药突变中被打破。这项工作揭示了格列卫特异性的机制,同时也提供了对能量景观如何进化的深入了解。