Suppr超能文献

基于分子动力学模拟对因T315I和P环突变导致的BCR-ABL对伊马替尼耐药性的分子基础解释。

Molecular basis explanation for imatinib resistance of BCR-ABL due to T315I and P-loop mutations from molecular dynamics simulations.

作者信息

Lee Tai-Sung, Potts Steven J, Kantarjian Hagop, Cortes Jorge, Giles Francis, Albitar Maher

机构信息

Consortium for Bioinformatics and Computational Biology and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55414, USA.

出版信息

Cancer. 2008 Apr 15;112(8):1744-53. doi: 10.1002/cncr.23355.

Abstract

BACKGROUND

Computational simulations have become powerful tools for understanding detailed interactions in biologic systems. To the authors' knowledge to date, the mechanism of imatinib resistance in BCR-ABL has not been clarified at the atomic level, and computational studies are required.

METHODS

Molecular dynamics (MD) simulations on the complex of imatinib with the wild-type, T315I mutant, and 10 other P-loop mutants of the tyrosine kinase BCR-ABL were performed to study the mechanism of imatinib resistance.

RESULTS

Simulations suggested that imatinib resistance of T315I results mainly comes from the breakdown of interactions between imatinib and both E286 and M290, contradictory to what was believed previously, in that the missing hydrogen bonding is the main contribution. The current results also demonstrated that the unfavorable electrostatic interaction between P-loop and imatinib is the main reason for resistance for the P-loop mutations. Furthermore, in Y253H, protonation of the histidine at the epsilon position is essential for rendering this mutation resistant to imatinib.

CONCLUSIONS

The current results indicated that large-scale simulations may offer insight and information that other simple modeling methods cannot provide regarding the problem of BCR-ABL imatinib resistance, especially in the case of conformational changes because of remote mutations. Imatinib resistance mechanisms that were not anticipated previously were revealed by analyzing the interactions between imatinib and individual residues based on simulation results. This results demonstrated that MD is a powerful way to verify and predict the clinical response or resistance to imatinib and to other potential drugs.

摘要

背景

计算模拟已成为理解生物系统中详细相互作用的强大工具。据作者所知,迄今为止,BCR-ABL中伊马替尼耐药的机制在原子水平上尚未阐明,需要进行计算研究。

方法

对伊马替尼与酪氨酸激酶BCR-ABL的野生型、T315I突变体及其他10种P环突变体的复合物进行分子动力学(MD)模拟,以研究伊马替尼耐药机制。

结果

模拟表明,T315I的伊马替尼耐药主要源于伊马替尼与E286和M290之间相互作用的破坏,这与之前的认识相反,即氢键缺失是主要原因。目前的结果还表明,P环与伊马替尼之间不利的静电相互作用是P环突变耐药的主要原因。此外,在Y253H中,ε位组氨酸的质子化对于使该突变对伊马替尼耐药至关重要。

结论

目前的结果表明,大规模模拟可能提供其他简单建模方法无法提供的关于BCR-ABL伊马替尼耐药问题的见解和信息,特别是在由于远程突变导致构象变化的情况下。通过基于模拟结果分析伊马替尼与单个残基之间的相互作用,揭示了先前未预料到的伊马替尼耐药机制。这一结果表明,MD是验证和预测对伊马替尼及其他潜在药物的临床反应或耐药性的有力方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验