Chaudry G J, Wilson R B, Draper R K, Clowes R C
Molecular and Cell Biology Program, University of Texas at Dallas, Richardson 75080.
J Biol Chem. 1989 Sep 5;264(25):15151-6.
Deletions within the structural exotoxin A gene of 27 or 119 amino acids in domain I of the mature polypeptide, or of 88 or 105 amino acids in domains I and II, resulted in the synthesis of exotoxin A (ETA) polypeptides that were not secreted from Pseudomonas aeruginosa hosts but were localized in the cell membrane. Insertions of a hexanucleotide sequence, either pCGAGCT or pCGAATT, at TaqI sites within the gene resulted in variant exotoxin A polypeptides which were secreted normally. pCGAGCT causes insertion of either Glu-Leu or Ser-Ser in the amino acid sequence of the toxin, while pCGAATT causes insertion of either Glu-Phe or Asn-Ser dipeptides. Although the cytotoxicity of eight variants was unimpaired, that of four others was reduced, and one variant which had a Glu-Phe insert between residues 60 and 61 (ETA-60EF61) was 500-fold less cytotoxic than wild-type exotoxin A. Purified ETA-60EF61 dissociated much faster from mouse LMTK- cells than wild-type ETA, suggesting that the insertion impaired the ability of ETA-60EF61 to interact with exotoxin A receptors. The location of the insert is within a major concavity on the surface of domain I of the exotoxin A molecule, suggesting that this concavity is important for toxin-receptor interaction.