Yang Zhimin, Wang Qiang, Shan Xiaoye, Li Wei-qi, Chen Guang-hui, Zhu Hongjun
Department of Applied Chemistry, College of Science, Nanjing Tech University, Nanjing 211816, People's Republic of China.
Department of Physics, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
J Chem Phys. 2015 Feb 21;142(7):074306. doi: 10.1063/1.4907897.
Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.
金属催化剂在单壁碳纳米管(SWCNTs)的成核和生长过程中起着重要作用。从根本上了解金属催化剂的性质及其与碳物种的相互作用,对于探究SWCNTs的成核和生长机制至关重要。在本研究中,我们使用密度泛函理论计算系统地研究了13原子和55原子的Fe以及Fe-Ni核壳颗粒的稳定性,以及这些颗粒与碳原子的相互作用。二十面体的13原子和55原子的Fe-Ni核壳双金属颗粒比相应的单金属Fe和Ni颗粒具有更高的稳定性。这些颗粒中相反的电荷转移(或分布)导致Fe表面壳层显示正电荷,而Ni表面壳层显示负电荷。相反的电荷转移会诱导不同的化学活性。与单金属Fe和Ni颗粒相比,核壳双金属颗粒与C原子的相互作用较弱。更重要的是,C原子只倾向于停留在双金属颗粒的表面。相比之下,C原子倾向于定位在单金属颗粒的次表面,这更有可能形成稳定的金属碳化物。单金属颗粒和双金属颗粒在这个问题上的差异可能导致SWCNTs不同的成核和生长机制。我们的研究结果为双金属催化剂的设计以及更好地理解SWCNTs的成核和生长机制提供了有用的见解。