Suppr超能文献

超低贵金属负载核壳纳米颗粒催化剂的合理设计原理与方法

Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.

作者信息

Hunt Sean T, Román-Leshkov Yuriy

机构信息

Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.

出版信息

Acc Chem Res. 2018 May 15;51(5):1054-1062. doi: 10.1021/acs.accounts.7b00510. Epub 2018 Mar 6.

Abstract

Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.

摘要

商业和新兴可再生能源技术依赖于贵金属催化剂,这些催化剂能够将反应物转化为有用的产品。然而,贵金属在地壳中是含量最少的元素,这使得它们对于未来全球规模的技术而言极其稀缺且昂贵。因此,人们投入了大量的研究工作来消除或大幅减少各种催化应用中贵金属的负载量。这些努力催生了大量非传统负载型球形纳米颗粒的多相贵金属催化剂形态。在许多这类新结构中,如成型、高指数和双金属颗粒,负载的贵金属中只有不到20%可用于进行催化转化。大多数贵金属原子位于次表面,仅通过与活性表面贵金属原子的几何和配体效应发挥次要催化作用。少数结构可实现接近100%的贵金属利用率,但严重的缺点限制了其普遍适用性。例如,除了稳定性和浸出问题外,单原子和超小簇催化剂具有极强的金属-载体相互作用、离散的d带以及缺乏相邻的贵金属表面位点。虽然单层薄膜不具备这些特征,但它们的表面积极低,在商业上不具相关性,主要用作模型催化剂。本综述倡导将核壳纳米颗粒(CS NPs)作为一种手段,来设计具有高贵金属利用率、高活性、稳定性和低成本的材料,用于热催化和电催化。通过核壳形态的重新设计,可以保留许多新兴贵金属结构的独特优势,同时克服其基本局限性。然而,CS NPs的商业实现仍然具有挑战性,需要在理论和制造方面协同取得进展。我们首先阐述了七条指导合适核材料设计的约束条件,这些条件自然地指向早期过渡金属陶瓷作为合适的核候选材料。其中两条约束条件极具挑战性。第一条涉及核改变壳层功函数和d带。为了恰当地研究能够满足这一约束条件的材料,我们讨论了我们开发的一种新的加热、淬火和剥离(HQE)密度泛函理论(DFT)技术,用于模拟异质金属界面。该技术用于预测过渡金属碳化物如何有利地调节各种贵金属单层壳层结构的催化性能。第二条具有挑战性的约束条件涉及可扩展制造具有独立合成控制的壳层厚度和组成以及核的尺寸和组成的CS NP结构。我们讨论了我们开发的一种合成方法,该方法能够实现可调CS NP结构的高温自组装。最后,我们讨论了如何利用这些原理和方法来设计用于各种应用的催化剂。这些应用包括设计一种热稳定的亚单层CS催化剂、一种高活性甲醇电氧化催化剂、耐CO的Pt催化剂以及一种比现有无贵金属催化剂成本更低的析氢催化剂。这种核壳结构有望实现超低的贵金属负载量,而陶瓷核有望实现热力学稳定性并获得独特的催化活性/可调性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验