Suppr超能文献

一种准确校正髂前上棘标记遮挡方法的验证

Validation of a method to accurately correct anterior superior iliac spine marker occlusion.

作者信息

Hoffman Joshua T, McNally Michael P, Wordeman Samuel C, Hewett Timothy E

机构信息

Sports Health and Performance Institute (SHPI) OSU Sports Medicine, The Ohio State University, 2050 Kenny Rd, Suite 3100, Columbus, OH 43221, USA.

Sports Health and Performance Institute (SHPI) OSU Sports Medicine, The Ohio State University, 2050 Kenny Rd, Suite 3100, Columbus, OH 43221, USA; Department of Orthopaedics, The Ohio State University, Columbus, OH, USA; School of Health and Rehabilitative Sciences, The Ohio State University, Columbus, OH, USA.

出版信息

J Biomech. 2015 Apr 13;48(6):1224-8. doi: 10.1016/j.jbiomech.2015.01.035. Epub 2015 Feb 3.

Abstract

Anterior superior iliac spine (ASIS) marker occlusion commonly occurs during three-dimensional (3-D) motion capture of dynamic tasks with deep hip flexion. The purpose of this study was to validate a universal technique to correct ASIS occlusion. 420 ms of bilateral ASIS marker occlusion was simulated in fourteen drop vertical jump (DVJ) trials (n=14). Kinematic and kinetic hip data calculated for pelvic segments based on iliac crest (IC) marker and virtual ASIS (produced by our algorithm and a commercial virtual join) trajectories were compared to true ASIS marker tracking data. Root mean squared errors (RMSEs; mean±standard deviation) and intra-class correlations (ICCs) between pelvic tracking based on virtual ASIS trajectories filled by our algorithm and true ASIS position were 2.3±0.9° (ICC=0.982) flexion/extension, 0.8±0.2° (ICC=0.954) abduction/adduction for hip angles, and 0.40±0.17 N m (ICC=1.000) and 1.05±0.36 N m (ICC=0.998) for sagittal and frontal plane moments. RMSEs for IC pelvic tracking were 6.9±1.8° (ICC=0.888) flexion/extension, 0.8±0.3° (ICC=0.949) abduction/adduction for hip angles, and 0.31±0.13 N m (ICC=1.00) and 1.48±0.69 N m (ICC=0.996) for sagittal and frontal plane moments. Finally, the commercially-available virtual join demonstrated RMSEs of 4.4±1.5° (ICC=0.945) flexion/extension, 0.7±0.2° (ICC=0.972) abduction/adduction for hip angles, and 0.97±0.62 N m (ICC=1.000) and 1.49±0.67 N m (ICC=0.996) for sagittal and frontal plane moments. The presented algorithm exceeded the a priori ICC cutoff of 0.95 for excellent validity and is an acceptable tracking alternative. While ICCs for the commercially available virtual join did not exhibit excellent correlation, good validity was observed for all kinematics and kinetics. IC marker pelvic tracking is not a valid alternative.

摘要

在前上棘(ASIS)标记遮挡通常发生在深度髋关节屈曲的动态任务的三维(3-D)运动捕捉过程中。本研究的目的是验证一种通用技术来纠正ASIS遮挡。在十四次垂直下落跳(DVJ)试验(n = 14)中模拟了420毫秒的双侧ASIS标记遮挡。将基于髂嵴(IC)标记和虚拟ASIS(由我们的算法和商业虚拟关节生成)轨迹计算的骨盆节段的运动学和动力学髋关节数据与真实ASIS标记跟踪数据进行比较。基于我们算法填充的虚拟ASIS轨迹的骨盆跟踪与真实ASIS位置之间的均方根误差(RMSEs;均值±标准差)和组内相关性(ICCs)为:髋关节屈伸角度2.3±0.9°(ICC = 0.982),外展/内收角度0.8±0.2°(ICC = 0.954),矢状面和额状面力矩分别为0.40±0.17 N·m(ICC = 1.000)和1.05±0.36 N·m(ICC = 0.998)。IC骨盆跟踪的RMSEs为:髋关节屈伸角度6.9±1.8°(ICC = 0.888),外展/内收角度0.8±0.3°(ICC = 0.949),矢状面和额状面力矩分别为0.31±0.13 N·m(ICC = 1.00)和1.48±0.69 N·m(ICC = 0.996)。最后,市售的虚拟关节的RMSEs为:髋关节屈伸角度4.4±1.5°(ICC = 0.945),外展/内收角度0.7±0.2°(ICC = 0.972),矢状面和额状面力矩分别为0.97±0.62 N·m(ICC = 1.000)和1.49±0.67 N·m(ICC = 0.996)。所提出的算法超过了优秀有效性的先验ICC截止值0.95,是一种可接受的跟踪替代方法。虽然市售虚拟关节的ICCs没有表现出极好的相关性,但在所有运动学和动力学方面都观察到了良好的有效性。IC标记骨盆跟踪不是一种有效的替代方法。

相似文献

1
Validation of a method to accurately correct anterior superior iliac spine marker occlusion.
J Biomech. 2015 Apr 13;48(6):1224-8. doi: 10.1016/j.jbiomech.2015.01.035. Epub 2015 Feb 3.
2
Comparison of two alternative technical marker sets for measuring 3D pelvic motion during gait.
J Biomech. 2015 Nov 5;48(14):3876-82. doi: 10.1016/j.jbiomech.2015.09.031. Epub 2015 Oct 3.
3
The influence of different pelvic technical marker sets upon hip kinematics during gait.
Gait Posture. 2019 Jun;71:74-78. doi: 10.1016/j.gaitpost.2019.04.012. Epub 2019 Apr 14.
8
Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity.
J Sports Sci. 2018 Oct;36(19):2202-2209. doi: 10.1080/02640414.2018.1445439. Epub 2018 Mar 1.
9
Differences in lower extremity kinematics between a bilateral drop-vertical jump and a single-leg step-down.
J Orthop Sports Phys Ther. 2007 May;37(5):245-52. doi: 10.2519/jospt.2007.2202.
10
Comparison of 3D Joint Angles Measured With the Kinect 2.0 Skeletal Tracker Versus a Marker-Based Motion Capture System.
J Appl Biomech. 2017 Apr;33(2):176-181. doi: 10.1123/jab.2016-0107. Epub 2016 Dec 5.

引用本文的文献

1
Efficacy of transdermal anti-inflammatory patches for musculoskeletal pain: a systematic review and meta-analysis.
Pain Manag. 2024 Oct-Nov;14(10-11):557-569. doi: 10.1080/17581869.2024.2421153. Epub 2024 Nov 22.
2
Bicycle Set-Up Dimensions and Cycling Kinematics: A Consensus Statement Using Delphi Methodology.
Sports Med. 2024 Nov;54(11):2701-2715. doi: 10.1007/s40279-024-02100-6. Epub 2024 Sep 20.

本文引用的文献

1
Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity.
J Biomech. 2010 May 7;43(7):1292-301. doi: 10.1016/j.jbiomech.2010.01.002. Epub 2010 Mar 4.
2
Alternative modelling procedures for pelvic marker occlusion during motion analysis.
Gait Posture. 2010 Apr;31(4):415-9. doi: 10.1016/j.gaitpost.2010.01.004. Epub 2010 Feb 21.
3
Reliability of landing 3D motion analysis: implications for longitudinal analyses.
Med Sci Sports Exerc. 2007 Nov;39(11):2021-8. doi: 10.1249/mss.0b013e318149332d.
5
Position and orientation in space of bones during movement: experimental artefacts.
Clin Biomech (Bristol). 1996 Mar;11(2):90-100. doi: 10.1016/0268-0033(95)00046-1.
6
Moments of force and mechanical power in jogging.
J Biomech. 1983;16(1):91-7. doi: 10.1016/0021-9290(83)90050-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验