Suppr超能文献

炎症导致NKX3.1缺失并加剧DNA损伤,但不会通过增加SIRT1表达来改变DNA损伤反应。

Inflammation contributes to NKX3.1 loss and augments DNA damage but does not alter the DNA damage response via increased SIRT1 expression.

作者信息

Debelec-Butuner Bilge, Ertunc Nursah, Korkmaz Kemal Sami

机构信息

Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey ; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100 Turkey.

Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey.

出版信息

J Inflamm (Lond). 2015 Feb 15;12:12. doi: 10.1186/s12950-015-0057-4. eCollection 2015.

Abstract

The oxidative stress response is a cellular defense mechanism that protects cells from oxidative damage and cancer development. The exact molecular mechanism by which reactive oxygen species (ROS) contribute to DNA damage and increase genome instability in prostate cancer merits further investigation. Here, we aimed to determine the effects of NKX3.1 loss on antioxidant defense in response to acute and chronic inflammation in an in vitro model. Oxidative stress-induced DNA damage resulted in increased H2AX((S139)) phosphorylation (a hallmark of DNA damage), along with the degradation of the androgen receptor (AR), p53 and NKX3.1, upon treatment with conditioned medium (CM) obtained from activated macrophages or H2O2. Furthermore, the expression and stability of SIRT1 were increased by CM treatment but not by H2O2 treatment, although the level of ATM((S1981)) phosphorylation was not changed compared with controls. Moreover, the deregulated antioxidant response resulted in upregulation of the pro-oxidant QSCN6 and the antioxidant GPX2 and downregulation of the antioxidant GPX3 after CM treatment. Consistently, the intracellular ROS level increased after chronic treatment, leading to a dose-dependent increase in the ability of LNCaP cells to tolerate oxidative damage. These data suggest that the inflammatory microenvironment is a major factor contributing to DNA damage and the deregulation of the oxidative stress response, which may be the underlying cause of the increased genetic heterogeneity during prostate tumor progression.

摘要

氧化应激反应是一种细胞防御机制,可保护细胞免受氧化损伤和癌症发展的影响。活性氧(ROS)导致前列腺癌DNA损伤并增加基因组不稳定性的确切分子机制值得进一步研究。在这里,我们旨在确定在体外模型中,NKX3.1缺失对急性和慢性炎症反应中抗氧化防御的影响。在用从活化巨噬细胞或H2O2获得的条件培养基(CM)处理后,氧化应激诱导的DNA损伤导致H2AX((S139))磷酸化增加(DNA损伤的标志),同时雄激素受体(AR)、p53和NKX3.1降解。此外,CM处理可增加SIRT1的表达和稳定性,但H2O2处理则不能,尽管与对照组相比,ATM((S1981))磷酸化水平没有变化。此外,CM处理后,抗氧化反应失调导致促氧化剂QSCN6和抗氧化剂GPX2上调,抗氧化剂GPX3下调。一致地,长期处理后细胞内ROS水平升高,导致LNCaP细胞耐受氧化损伤的能力呈剂量依赖性增加。这些数据表明,炎症微环境是导致DNA损伤和氧化应激反应失调的主要因素,这可能是前列腺肿瘤进展过程中遗传异质性增加的潜在原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ccd/4336697/0db8619f703e/12950_2015_57_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验