Suppr超能文献

整合多个网络用于蛋白质功能预测。

Integrating multiple networks for protein function prediction.

作者信息

Yu Guoxian, Zhu Hailong, Domeniconi Carlotta, Guo Maozu

出版信息

BMC Syst Biol. 2015;9 Suppl 1(Suppl 1):S3. doi: 10.1186/1752-0509-9-S1-S3. Epub 2015 Jan 21.

Abstract

BACKGROUND

High throughput techniques produce multiple functional association networks. Integrating these networks can enhance the accuracy of protein function prediction. Many algorithms have been introduced to generate a composite network, which is obtained as a weighted sum of individual networks. The weight assigned to an individual network reflects its benefit towards the protein functional annotation inference. A classifier is then trained on the composite network for predicting protein functions. However, since these techniques model the optimization of the composite network and the prediction tasks as separate objectives, the resulting composite network is not necessarily optimal for the follow-up protein function prediction.

RESULTS

We address this issue by modeling the optimization of the composite network and the prediction problems within a unified objective function. In particular, we use a kernel target alignment technique and the loss function of a network based classifier to jointly adjust the weights assigned to the individual networks. We show that the proposed method, called MNet, can achieve a performance that is superior (with respect to different evaluation criteria) to related techniques using the multiple networks of four example species (yeast, human, mouse, and fly) annotated with thousands (or hundreds) of GO terms.

CONCLUSION

MNet can effectively integrate multiple networks for protein function prediction and is robust to the input parameters. Supplementary data is available at https://sites.google.com/site/guoxian85/home/mnet. The Matlab code of MNet is available upon request.

摘要

背景

高通量技术产生了多个功能关联网络。整合这些网络可以提高蛋白质功能预测的准确性。已经引入了许多算法来生成一个复合网络,该复合网络是作为各个网络的加权和获得的。分配给单个网络的权重反映了其对蛋白质功能注释推断的益处。然后在复合网络上训练一个分类器来预测蛋白质功能。然而,由于这些技术将复合网络的优化和预测任务建模为单独的目标,因此得到的复合网络对于后续的蛋白质功能预测不一定是最优的。

结果

我们通过在一个统一的目标函数中对复合网络的优化和预测问题进行建模来解决这个问题。具体来说,我们使用核目标对齐技术和基于网络的分类器的损失函数来共同调整分配给各个网络的权重。我们表明,所提出的方法,称为MNet,使用注释有数千(或数百)个GO术语的四个示例物种(酵母、人类、小鼠和果蝇)的多个网络,相对于不同的评估标准,可以实现优于相关技术的性能。

结论

MNet可以有效地整合多个网络用于蛋白质功能预测,并且对输入参数具有鲁棒性。补充数据可在https://sites.google.com/site/guoxian85/home/mnet获取。MNet的Matlab代码可根据要求提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9503/4331678/e5f041980b02/1752-0509-9-S1-S3-1.jpg

相似文献

1
Integrating multiple networks for protein function prediction.
BMC Syst Biol. 2015;9 Suppl 1(Suppl 1):S3. doi: 10.1186/1752-0509-9-S1-S3. Epub 2015 Jan 21.
2
Predicting Protein Function via Semantic Integration of Multiple Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Mar-Apr;13(2):220-32. doi: 10.1109/TCBB.2015.2459713. Epub 2015 Jul 22.
3
Predicting Protein Function Using Multiple Kernels.
IEEE/ACM Trans Comput Biol Bioinform. 2015 Jan-Feb;12(1):219-33. doi: 10.1109/TCBB.2014.2351821.
4
NegGOA: negative GO annotations selection using ontology structure.
Bioinformatics. 2016 Oct 1;32(19):2996-3004. doi: 10.1093/bioinformatics/btw366. Epub 2016 Jun 17.
5
Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
Bioinformatics. 2007 Jul 1;23(13):i529-38. doi: 10.1093/bioinformatics/btm195.
6
Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization.
BMC Syst Biol. 2015;9 Suppl 1(Suppl 1):S9. doi: 10.1186/1752-0509-9-S1-S9. Epub 2015 Jan 21.
7
Protein complex prediction in large ontology attributed protein-protein interaction networks.
IEEE/ACM Trans Comput Biol Bioinform. 2013 May-Jun;10(3):729-41. doi: 10.1109/TCBB.2013.86.
8
Exploiting ontology graph for predicting sparsely annotated gene function.
Bioinformatics. 2015 Jun 15;31(12):i357-64. doi: 10.1093/bioinformatics/btv260.
9
AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.
Bioinformatics. 2017 Jun 15;33(12):1829-1836. doi: 10.1093/bioinformatics/btx029.
10
Fast integration of heterogeneous data sources for predicting gene function with limited annotation.
Bioinformatics. 2010 Jul 15;26(14):1759-65. doi: 10.1093/bioinformatics/btq262. Epub 2010 May 27.

引用本文的文献

1
A Literature Review of Gene Function Prediction by Modeling Gene Ontology.
Front Genet. 2020 Apr 24;11:400. doi: 10.3389/fgene.2020.00400. eCollection 2020.
2
Machine Learning and Integrative Analysis of Biomedical Big Data.
Genes (Basel). 2019 Jan 28;10(2):87. doi: 10.3390/genes10020087.
3
Integrating Multiple Interaction Networks for Gene Function Inference.
Molecules. 2018 Dec 21;24(1):30. doi: 10.3390/molecules24010030.
4
Constructing an integrated gene similarity network for the identification of disease genes.
J Biomed Semantics. 2017 Sep 20;8(Suppl 1):32. doi: 10.1186/s13326-017-0141-1.
5
Interspecies gene function prediction using semantic similarity.
BMC Syst Biol. 2016 Dec 23;10(Suppl 4):121. doi: 10.1186/s12918-016-0361-5.
7
A multiple kernel learning algorithm for drug-target interaction prediction.
BMC Bioinformatics. 2016 Jan 22;17:46. doi: 10.1186/s12859-016-0890-3.

本文引用的文献

1
Protein Function Prediction with Incomplete Annotations.
IEEE/ACM Trans Comput Biol Bioinform. 2014 May-Jun;11(3):579-91. doi: 10.1109/TCBB.2013.142.
2
Hierarchical ensemble methods for protein function prediction.
ISRN Bioinform. 2014 May 4;2014:901419. doi: 10.1155/2014/901419. eCollection 2014.
3
New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence.
Bioinformatics. 2014 Jun 15;30(12):i219-27. doi: 10.1093/bioinformatics/btu263.
4
Negative example selection for protein function prediction: the NoGO database.
PLoS Comput Biol. 2014 Jun 12;10(6):e1003644. doi: 10.1371/journal.pcbi.1003644. eCollection 2014 Jun.
5
Protein function prediction using multilabel ensemble classification.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jul-Aug;10(4):1045-57. doi: 10.1109/TCBB.2013.111.
6
Inferring the soybean (Glycine max) microRNA functional network based on target gene network.
Bioinformatics. 2014 Jan 1;30(1):94-103. doi: 10.1093/bioinformatics/btt605. Epub 2013 Oct 22.
7
Measuring gene functional similarity based on group-wise comparison of GO terms.
Bioinformatics. 2013 Jun 1;29(11):1424-32. doi: 10.1093/bioinformatics/btt160. Epub 2013 Apr 9.
8
MS-kNN: protein function prediction by integrating multiple data sources.
BMC Bioinformatics. 2013;14 Suppl 3(Suppl 3):S8. doi: 10.1186/1471-2105-14-S3-S8. Epub 2013 Feb 28.
9
Combining heterogeneous data sources for accurate functional annotation of proteins.
BMC Bioinformatics. 2013;14 Suppl 3(Suppl 3):S10. doi: 10.1186/1471-2105-14-S3-S10. Epub 2013 Feb 28.
10
Protein function prediction by massive integration of evolutionary analyses and multiple data sources.
BMC Bioinformatics. 2013;14 Suppl 3(Suppl 3):S1. doi: 10.1186/1471-2105-14-S3-S1. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验