Suppr超能文献

整合多个交互网络进行基因功能推断。

Integrating Multiple Interaction Networks for Gene Function Inference.

机构信息

School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000, China.

School of Software, Central South University, Changsha 410075, China.

出版信息

Molecules. 2018 Dec 21;24(1):30. doi: 10.3390/molecules24010030.

Abstract

In the past few decades, the number and variety of genomic and proteomic data available have increased dramatically. Molecular or functional interaction networks are usually constructed according to high-throughput data and the topological structure of these interaction networks provide a wealth of information for inferring the function of genes or proteins. It is a widely used way to mine functional information of genes or proteins by analyzing the association networks. However, it remains still an urgent but unresolved challenge how to combine multiple heterogeneous networks to achieve more accurate predictions. In this paper, we present a method named ReprsentConcat to improve function inference by integrating multiple interaction networks. The low-dimensional representation of each node in each network is extracted, then these representations from multiple networks are concatenated and fed to gcForest, which augment feature vectors by cascading and automatically determines the number of cascade levels. We experimentally compare ReprsentConcat with a state-of-the-art method, showing that it achieves competitive results on the datasets of yeast and human. Moreover, it is robust to the hyperparameters including the number of dimensions.

摘要

在过去的几十年中,可用的基因组和蛋白质组数据的数量和种类急剧增加。分子或功能相互作用网络通常是根据高通量数据构建的,这些相互作用网络的拓扑结构为推断基因或蛋白质的功能提供了丰富的信息。通过分析关联网络来挖掘基因或蛋白质的功能信息是一种广泛使用的方法。然而,如何将多个异构网络结合起来以实现更准确的预测仍然是一个紧迫但尚未解决的挑战。在本文中,我们提出了一种名为 ReprsentConcat 的方法,通过整合多个相互作用网络来改进功能推断。从每个网络中提取每个节点的低维表示,然后将来自多个网络的这些表示串联起来并馈送到 gcForest 中,gcForest 通过级联来扩充特征向量,并自动确定级联的数量。我们在酵母和人类数据集上对 ReprsentConcat 与最先进的方法进行了实验比较,结果表明它在这些数据集上取得了有竞争力的结果。此外,它对包括维度数量在内的超参数具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1223/6337127/d98f74b94b44/molecules-24-00030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验