Suppr超能文献

基于扩散的蛋白质功能网络预测的新方向:置信度整合途径。

New directions for diffusion-based network prediction of protein function: incorporating pathways with confidence.

机构信息

Department of Computer Science, Tufts University, Medford, MA 02155, USA and Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Bioinformatics. 2014 Jun 15;30(12):i219-27. doi: 10.1093/bioinformatics/btu263.

Abstract

MOTIVATION

It has long been hypothesized that incorporating models of network noise as well as edge directions and known pathway information into the representation of protein-protein interaction (PPI) networks might improve their utility for functional inference. However, a simple way to do this has not been obvious. We find that diffusion state distance (DSD), our recent diffusion-based metric for measuring dissimilarity in PPI networks, has natural extensions that incorporate confidence, directions and can even express coherent pathways by calculating DSD on an augmented graph.

RESULTS

We define three incremental versions of DSD which we term cDSD, caDSD and capDSD, where the capDSD matrix incorporates confidence, known directed edges, and pathways into the measure of how similar each pair of nodes is according to the structure of the PPI network. We test four popular function prediction methods (majority vote, weighted majority vote, multi-way cut and functional flow) using these different matrices on the Baker's yeast PPI network in cross-validation. The best performing method is weighted majority vote using capDSD. We then test the performance of our augmented DSD methods on an integrated heterogeneous set of protein association edges from the STRING database. The superior performance of capDSD in this context confirms that treating the pathways as probabilistic units is more powerful than simply incorporating pathway edges independently into the network.

AVAILABILITY

All source code for calculating the confidences, for extracting pathway information from KEGG XML files, and for calculating the cDSD, caDSD and capDSD matrices are available from http://dsd.cs.tufts.edu/capdsd

摘要

动机

长期以来,人们一直假设将网络噪声模型以及边缘方向和已知的途径信息纳入蛋白质-蛋白质相互作用(PPI)网络的表示中,可以提高其进行功能推断的效用。然而,一种简单的方法并不明显。我们发现,我们最近基于扩散的 PPI 网络差异度量方法扩散状态距离(DSD)具有自然扩展,可以通过在扩充图上计算 DSD 来纳入置信度、方向,甚至可以表达连贯的途径。

结果

我们定义了三个增量版本的 DSD,分别称为 cDSD、caDSD 和 capDSD,其中 capDSD 矩阵将置信度、已知有向边和途径纳入了根据 PPI 网络结构测量每对节点相似程度的度量中。我们在贝克氏酵母 PPI 网络的交叉验证中使用这些不同的矩阵测试了四种流行的功能预测方法(多数投票、加权多数投票、多向切割和功能流)。表现最好的方法是使用 capDSD 的加权多数投票。然后,我们在 STRING 数据库中的综合异构蛋白质关联边缘集上测试了我们扩充的 DSD 方法的性能。在这种情况下,capDSD 的优越性能证实了将途径视为概率单元比简单地将途径边缘独立地纳入网络更有效。

可用性

计算置信度、从 KEGG XML 文件提取途径信息以及计算 cDSD、caDSD 和 capDSD 矩阵的所有源代码均可从 http://dsd.cs.tufts.edu/capdsd 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d8a/4058952/33b3f34faf8b/btu263f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验