Holm Rikke, Einholm Anja P, Andersen Jens P, Vilsen Bente
From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark.
From the Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark
J Biol Chem. 2015 Apr 10;290(15):9801-11. doi: 10.1074/jbc.M114.625509. Epub 2015 Feb 24.
The Na(+),K(+)-ATPase binds Na(+) at three transport sites denoted I, II, and III, of which site III is Na(+)-specific and suggested to be the first occupied in the cooperative binding process activating phosphorylation from ATP. Here we demonstrate that the asparagine substitution of the aspartate associated with site III found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood causes a dramatic reduction of Na(+) affinity in the α1-, α2-, and α3-isoforms of Na(+),K(+)-ATPase, whereas other substitutions of this aspartate are much less disruptive. This is likely due to interference by the amide function of the asparagine side chain with Na(+)-coordinating residues in site III. Remarkably, the Na(+) affinity of site III aspartate to asparagine and alanine mutants is rescued by second-site mutation of a glutamate in the extracellular part of the fourth transmembrane helix, distant to site III. This gain-of-function mutation works without recovery of the lost cooperativity and selectivity of Na(+) binding and does not affect the E1-E2 conformational equilibrium or the maximum phosphorylation rate. Hence, the rescue of Na(+) affinity is likely intrinsic to the Na(+) binding pocket, and the underlying mechanism could be a tightening of Na(+) binding at Na(+) site II, possibly via movement of transmembrane helix four. The second-site mutation also improves Na(+),K(+) pump function in intact cells. Rescue of Na(+) affinity and Na(+) and K(+) transport by second-site mutation is unique in the history of Na(+),K(+)-ATPase and points to new possibilities for treatment of neurological patients carrying Na(+),K(+)-ATPase mutations.
钠钾ATP酶在三个被称为I、II和III的转运位点结合钠离子,其中位点III对钠离子具有特异性,并且被认为是在协同结合过程中首先被占据的位点,该过程激活了ATP磷酸化。在此,我们证明,在快速发作性肌张力障碍帕金森综合征或儿童交替性偏瘫患者中发现的与位点III相关的天冬氨酸被天冬酰胺取代,会导致钠钾ATP酶的α1、α2和α3亚型对钠离子的亲和力显著降低,而该天冬氨酸的其他取代则干扰性小得多。这可能是由于天冬酰胺侧链的酰胺功能干扰了位点III中与钠离子配位的残基。值得注意的是,位点III天冬氨酸突变为天冬酰胺和丙氨酸的突变体对钠离子的亲和力,可通过第四跨膜螺旋细胞外部分一个谷氨酸的第二位点突变得到恢复,该谷氨酸与位点III距离较远。这种功能获得性突变在不恢复钠离子结合丧失的协同性和选择性的情况下起作用,并且不影响E1-E2构象平衡或最大磷酸化速率。因此,钠离子亲和力的恢复可能是钠离子结合口袋固有的,其潜在机制可能是通过跨膜螺旋4的移动加强了钠离子在位点II的结合。第二位点突变还改善了完整细胞中的钠钾泵功能。通过第二位点突变恢复钠离子亲和力以及钠钾转运,在钠钾ATP酶研究史上是独一无二的,这为治疗携带钠钾ATP酶突变的神经疾病患者指明了新的可能性。
Proc Natl Acad Sci U S A. 2016-12-27
Proc Natl Acad Sci U S A. 2005-8-9
J Gen Physiol. 2022-7-4
Neurol Genet. 2020-8-4
J Biol Chem. 2018-11-8
J Biol Chem. 2017-12-15
Proc Natl Acad Sci U S A. 2016-12-27
Lancet Neurol. 2014-5
Neurology. 2014-1-15
Science. 2013-9-19
Mov Disord. 2013-9