MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
Sci Rep. 2017 Jan 13;7:39829. doi: 10.1038/srep39829.
The dynamically changing protonation states of the six acidic amino acid residues in the ion binding pocket of the Na, K -ATPase (NKA) during the ion transport cycle are proposed to drive ion binding, release and possibly determine Na or K selectivity. We use molecular dynamics (MD) and density functional theory (DFT) simulations to determine the protonation scheme of the Na bound conformation of NKA. MD simulations of all possible protonation schemes show that the bound Na ions are most stably bound when three or four protons reside in the binding sites, and that Glu954 in site III is always protonated. Glutamic acid residues in the three binding sites act as water gates, and their deprotonation triggers water entry to the binding sites. From DFT calculations of Na binding energies, we conclude that three protons in the binding site are needed to effectively bind Na from water and four are needed to release them in the next step. Protonation of Asp926 in site III will induce Na release, and Glu327, Glu954 and Glu779 are all likely to be protonated in the Na bound occluded conformation. Our data provides key insights into the role of protons in the Na binding and release mechanism of NKA.
在离子转运循环过程中,Na^+,K^+-ATP 酶(NKA)离子结合口袋中六个酸性氨基酸残基的动态变化质子化状态被认为可以驱动离子结合、释放,并可能决定 Na^+或 K^+的选择性。我们使用分子动力学(MD)和密度泛函理论(DFT)模拟来确定 NKA 结合态的质子化方案。所有可能质子化方案的 MD 模拟表明,当三个或四个质子位于结合位点时,结合的 Na^+离子最稳定,并且 III 位点的 Glu954 总是质子化的。三个结合位点中的谷氨酸残基充当水闸,它们的去质子化会触发水进入结合位点。通过对 Na^+结合能的 DFT 计算,我们得出结论,需要三个质子从水中有效结合 Na^+,而在下一个步骤中需要四个质子释放它们。III 位点的 Asp926 质子化会诱导 Na^+释放,并且在 Na^+结合的封闭构象中,Glu327、Glu954 和 Glu779 都可能被质子化。我们的数据为质子在 NKA 的 Na^+结合和释放机制中的作用提供了重要的见解。