Dai James Y, Zhang Xinyi Cindy
Am J Epidemiol. 2015 Mar 15;181(6):440-9. doi: 10.1093/aje/kwu291. Epub 2015 Feb 21.
In this article, we assess the impact of case-control sampling on mendelian randomization analyses with a dichotomous disease outcome and a continuous exposure. The 2-stage instrumental variables (2SIV) method uses the prediction of the exposure given genotypes in the logistic regression for the outcome and provides a valid test and an approximation of the causal effect. Under case-control sampling, however, the first stage of the 2SIV procedure becomes a secondary trait association, which requires proper adjustment for the biased sampling. Through theoretical development and simulations, we compare the naïve estimator, the inverse probability weighted estimator, and the maximum likelihood estimator for the first-stage association and, more importantly, the resulting 2SIV estimates of the causal effect. We also include in our comparison the causal odds ratio estimate derived from structural mean models by double-logistic regression. Our results suggest that the naïve estimator is substantially biased under the alternative, yet it remains unbiased under the null hypothesis of no causal effect; the maximum likelihood estimator yields smaller variance and mean squared error than other estimators; and the structural mean models estimator delivers the smallest bias, though generally incurring a larger variance and sometimes having issues in algorithm stability and convergence.
在本文中,我们评估病例对照抽样对具有二分疾病结局和连续暴露的孟德尔随机化分析的影响。两阶段工具变量(2SIV)方法在结局的逻辑回归中使用给定基因型的暴露预测,并提供有效的检验和因果效应的近似值。然而,在病例对照抽样下,2SIV程序的第一阶段变成了次要性状关联,这需要对有偏抽样进行适当调整。通过理论推导和模拟,我们比较了第一阶段关联的朴素估计量、逆概率加权估计量和最大似然估计量,更重要的是,比较了由此得出的因果效应的2SIV估计值。我们的比较还包括通过双逻辑回归从结构均值模型得出的因果优势比估计值。我们的结果表明,朴素估计量在备择假设下存在实质性偏差,但在无因果效应的原假设下仍保持无偏;最大似然估计量比其他估计量具有更小的方差和均方误差;结构均值模型估计量的偏差最小,尽管通常会产生较大的方差,并且有时在算法稳定性和收敛性方面存在问题。