Bennett Gordon M, Moran Nancy A
Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712.
Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76. doi: 10.1073/pnas.1421388112. Epub 2015 Feb 23.
Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host-symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host-pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid-Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils.
许多真核生物与微生物存在专性共生关系,这种关系可在世代间直接传递。遗传性共生的一个模型是蚜虫(一类吸食汁液的昆虫)与蚜虫内共生菌(一种γ-变形菌)之间的共生关系,这种细菌在1.5亿年前定殖于蚜虫祖先体内,并在几乎所有5000种蚜虫物种中存续至今。共生体的获得促成了进化和生态扩张;蚜虫是众多没有遗传性共生就无法生存的昆虫群体之一。共生联盟的潜在负面影响较少受到关注。从短期来看,共生体会带来代谢成本。在进化过程中,宿主会进化出超出共生最初益处的依赖性。共生伙伴进入一种进化螺旋,导致不可逆转的相互依赖及相关风险。宿主对共生的适应性变化(如免疫系统的改变)可能会带来脆弱性。共生体基因组也会不断积累有害突变,限制其有益作用和环境耐受性。最后,专性遗传性共生体的适应性利益与宿主不同,从而导致自私的倾向。因此,正如在控制宿主-病原体相互作用的基因中观察到的那样,宿主-共生体界面的基因预计会经历一场共同进化的军备竞赛。在宏观进化尺度上,相互作用的共生体和宿主基因的快速进化预计会通过产生遗传不兼容性来加速宿主物种形成的速度。然而,共生体基因组的退化最终可能会限制宿主物种的生态范围,增加灭绝风险。蚜虫-蚜虫内共生菌共生关系及相关系统的最新研究结果表明,虽然遗传性共生可以扩大生态范围并促进物种多样化,但它也存在潜在危险。