Howard Amy E, Fox Jaime C, Slep Kevin C
From the Department of Biochemistry and Biophysics, Program in Molecular and Cellular Biophysics, and.
Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
J Biol Chem. 2015 Apr 17;290(16):10149-62. doi: 10.1074/jbc.M114.633826. Epub 2015 Feb 26.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A-F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1-3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.
微管相关蛋白在空间和时间上调节微管(MT)动力学,这对于双极有丝分裂纺锤体的正确形成至关重要。XMAP215家族由保守的微管相关蛋白组成,这些蛋白使用一系列微管蛋白结合肿瘤过度表达基因(TOG)结构域,该结构域由六个(A - F)亨廷顿蛋白、延伸因子3、蛋白磷酸酶2A、雷帕霉素靶蛋白(HEAT)重复序列组成,以强劲提高MT正端聚合速率。最近的研究表明,TOG结构域在整个序列中具有不同的保守结构,这对XMAP215 MT聚合机制中位置依赖性TOG结构域的微管蛋白结合活性和功能具有影响。尽管TOG结构域1、2和4已得到充分描述,但表征TOG结构域3和5的结构及机制信息仍不明确。在此,我们展示了果蝇小纺锤体(Msps)TOG3的结构与特征。Msps TOG3具有如下两个独特特征:第一个是稳定最后四个HEAT重复序列(HRs)的C末端尾巴,第二个是HR B中的独特结构。TOG3与其他TOG结构域结构的结构比对表明,TOG3的结构与TOG结构域1和2最为相似,与TOG4不同。将TOG3对接至最近解析的Stu2 TOG1·和TOG2·微管蛋白复合物结构上表明,TOG3使用类似保守的微管蛋白结合HEAT环内残基来结合α-和β-微管蛋白。这表明尽管结构存在差异,TOG3仍保持了类似TOG1和TOG2的TOG-微管蛋白结合模式。TOG结构域1 - 3的相似性以及TOG4的差异表明,具有极化结构多样性的TOG结构域阵列可能在XMAP215依赖性MT聚合活性中发挥关键的机制作用。