Suppr超能文献

使用自动密度分割算法的乳腺密度分析

Breast Density Analysis Using an Automatic Density Segmentation Algorithm.

作者信息

Oliver Arnau, Tortajada Meritxell, Lladó Xavier, Freixenet Jordi, Ganau Sergi, Tortajada Lidia, Vilagran Mariona, Sentís Melcior, Martí Robert

机构信息

Department of Computer Architecture and Technology, University of Girona, 17071, Girona, Spain.

UDIAT-Centre Diagnòstic, Corporació Parc Taulí, 08208, Sabadell, Spain.

出版信息

J Digit Imaging. 2015 Oct;28(5):604-12. doi: 10.1007/s10278-015-9777-5.

Abstract

Breast density is a strong risk factor for breast cancer. In this paper, we present an automated approach for breast density segmentation in mammographic images based on a supervised pixel-based classification and using textural and morphological features. The objective of the paper is not only to show the feasibility of an automatic algorithm for breast density segmentation but also to prove its potential application to the study of breast density evolution in longitudinal studies. The database used here contains three complete screening examinations, acquired 2 years apart, of 130 different patients. The approach was validated by comparing manual expert annotations with automatically obtained estimations. Transversal analysis of the breast density analysis of craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts acquired in the same study showed a correlation coefficient of ρ = 0.96 between the mammographic density percentage for left and right breasts, whereas a comparison of both mammographic views showed a correlation of ρ = 0.95. A longitudinal study of breast density confirmed the trend that dense tissue percentage decreases over time, although we noticed that the decrease in the ratio depends on the initial amount of breast density.

摘要

乳腺密度是乳腺癌的一个重要风险因素。在本文中,我们提出了一种基于监督像素分类并利用纹理和形态学特征的乳腺钼靶图像中乳腺密度分割的自动化方法。本文的目的不仅是展示乳腺密度分割自动算法的可行性,还在于证明其在纵向研究中乳腺密度演变研究的潜在应用。这里使用的数据库包含130名不同患者的三次完整筛查检查,每次检查间隔两年。通过将专家手动标注与自动获得的估计值进行比较来验证该方法。对同一研究中获取的双侧乳房头尾位(CC)和内外斜位(MLO)视图的乳腺密度分析进行横向分析,结果显示左右乳房的乳腺钼靶密度百分比之间的相关系数ρ = 0.96,而两种乳腺钼靶视图的比较显示相关系数ρ = 0.95。对乳腺密度的纵向研究证实了致密组织百分比随时间下降的趋势,尽管我们注意到下降比例取决于乳腺密度的初始量。

相似文献

1
Breast Density Analysis Using an Automatic Density Segmentation Algorithm.
J Digit Imaging. 2015 Oct;28(5):604-12. doi: 10.1007/s10278-015-9777-5.
2
Influence of using manual or automatic breast density information in a mass detection CAD system.
Acad Radiol. 2010 Jul;17(7):877-83. doi: 10.1016/j.acra.2010.04.013.
3
Automated mammographic breast density estimation using a fully convolutional network.
Med Phys. 2018 Mar;45(3):1178-1190. doi: 10.1002/mp.12763. Epub 2018 Feb 19.
4
A new method for quantitative analysis of mammographic density.
Med Phys. 2007 Nov;34(11):4491-8. doi: 10.1118/1.2789407.
5
Computerized image analysis: estimation of breast density on mammograms.
Med Phys. 2001 Jun;28(6):1056-69. doi: 10.1118/1.1376640.
6
Assessment of a fully automated, high-throughput mammographic density measurement tool for use with processed digital mammograms.
Cancer Causes Control. 2014 Aug;25(8):1037-43. doi: 10.1007/s10552-014-0404-4. Epub 2014 Jun 25.
7
Determination of mammographic breast density using a deep convolutional neural network.
Br J Radiol. 2019 Jan;92(1093):20180691. doi: 10.1259/bjr.20180691. Epub 2018 Oct 1.
8
Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2662-2671. doi: 10.1109/TBME.2017.2649481.
10
Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction.
Comput Methods Programs Biomed. 2014 Sep;116(2):105-15. doi: 10.1016/j.cmpb.2014.01.021. Epub 2014 Feb 20.

本文引用的文献

1
Breast peripheral area correction in digital mammograms.
Comput Biol Med. 2014 Jul;50:32-40. doi: 10.1016/j.compbiomed.2014.03.010. Epub 2014 Apr 2.
2
Automated volumetric breast density estimation: a comparison with visual assessment.
Clin Radiol. 2013 Jul;68(7):690-5. doi: 10.1016/j.crad.2013.01.011. Epub 2013 Feb 20.
4
Automatic breast density segmentation: an integration of different approaches.
Phys Med Biol. 2011 May 7;56(9):2715-29. doi: 10.1088/0031-9155/56/9/005. Epub 2011 Apr 5.
5
Breast tissue composition and susceptibility to breast cancer.
J Natl Cancer Inst. 2010 Aug 18;102(16):1224-37. doi: 10.1093/jnci/djq239. Epub 2010 Jul 8.
6
Influence of using manual or automatic breast density information in a mass detection CAD system.
Acad Radiol. 2010 Jul;17(7):877-83. doi: 10.1016/j.acra.2010.04.013.
7
Local binary patterns variants as texture descriptors for medical image analysis.
Artif Intell Med. 2010 Jun;49(2):117-25. doi: 10.1016/j.artmed.2010.02.006. Epub 2010 Mar 24.
8
A review of automatic mass detection and segmentation in mammographic images.
Med Image Anal. 2010 Apr;14(2):87-110. doi: 10.1016/j.media.2009.12.005. Epub 2009 Dec 29.
9
A statistical approach for breast density segmentation.
J Digit Imaging. 2010 Oct;23(5):527-37. doi: 10.1007/s10278-009-9217-5. Epub 2009 Jun 9.
10
A novel breast tissue density classification methodology.
IEEE Trans Inf Technol Biomed. 2008 Jan;12(1):55-65. doi: 10.1109/TITB.2007.903514.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验