Oliver Arnau, Tortajada Meritxell, Lladó Xavier, Freixenet Jordi, Ganau Sergi, Tortajada Lidia, Vilagran Mariona, Sentís Melcior, Martí Robert
Department of Computer Architecture and Technology, University of Girona, 17071, Girona, Spain.
UDIAT-Centre Diagnòstic, Corporació Parc Taulí, 08208, Sabadell, Spain.
J Digit Imaging. 2015 Oct;28(5):604-12. doi: 10.1007/s10278-015-9777-5.
Breast density is a strong risk factor for breast cancer. In this paper, we present an automated approach for breast density segmentation in mammographic images based on a supervised pixel-based classification and using textural and morphological features. The objective of the paper is not only to show the feasibility of an automatic algorithm for breast density segmentation but also to prove its potential application to the study of breast density evolution in longitudinal studies. The database used here contains three complete screening examinations, acquired 2 years apart, of 130 different patients. The approach was validated by comparing manual expert annotations with automatically obtained estimations. Transversal analysis of the breast density analysis of craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts acquired in the same study showed a correlation coefficient of ρ = 0.96 between the mammographic density percentage for left and right breasts, whereas a comparison of both mammographic views showed a correlation of ρ = 0.95. A longitudinal study of breast density confirmed the trend that dense tissue percentage decreases over time, although we noticed that the decrease in the ratio depends on the initial amount of breast density.
乳腺密度是乳腺癌的一个重要风险因素。在本文中,我们提出了一种基于监督像素分类并利用纹理和形态学特征的乳腺钼靶图像中乳腺密度分割的自动化方法。本文的目的不仅是展示乳腺密度分割自动算法的可行性,还在于证明其在纵向研究中乳腺密度演变研究的潜在应用。这里使用的数据库包含130名不同患者的三次完整筛查检查,每次检查间隔两年。通过将专家手动标注与自动获得的估计值进行比较来验证该方法。对同一研究中获取的双侧乳房头尾位(CC)和内外斜位(MLO)视图的乳腺密度分析进行横向分析,结果显示左右乳房的乳腺钼靶密度百分比之间的相关系数ρ = 0.96,而两种乳腺钼靶视图的比较显示相关系数ρ = 0.95。对乳腺密度的纵向研究证实了致密组织百分比随时间下降的趋势,尽管我们注意到下降比例取决于乳腺密度的初始量。