Department of Computer Science and Software Engineering, University of Canterbury, Christchurch 8140, New Zealand.
Canterbury Breastcare, St. George's Medical Centre, Christchurch 8014, New Zealand.
Sensors (Basel). 2022 Mar 30;22(7):2672. doi: 10.3390/s22072672.
Breast density has been recognised as an important biomarker that indicates the risk of developing breast cancer. Accurate classification of breast density plays a crucial role in developing a computer-aided detection (CADe) system for mammogram interpretation. This paper proposes a novel texture descriptor, namely, rotation invariant uniform local quinary patterns (RIU4-LQP), to describe texture patterns in mammograms and to improve the robustness of image features. In conventional processing schemes, image features are obtained by computing histograms from texture patterns. However, such processes ignore very important spatial information related to the texture features. This study designs a new feature vector, namely, K-spectrum, by using Baddeley's K-inhom function to characterise the spatial distribution information of feature point sets. Texture features extracted by RIU4-LQP and K-spectrum are utilised to classify mammograms into BI-RADS density categories. Three feature selection methods are employed to optimise the feature set. In our experiment, two mammogram datasets, INbreast and MIAS, are used to test the proposed methods, and comparative analyses and statistical tests between different schemes are conducted. Experimental results show that our proposed method outperforms other approaches described in the literature, with the best classification accuracy of 92.76% (INbreast) and 86.96% (MIAS).
乳腺密度被认为是一个重要的生物标志物,可提示乳腺癌的发病风险。准确的乳腺密度分类在开发用于 mammogram 解读的计算机辅助检测(CADe)系统中起着至关重要的作用。本文提出了一种新的纹理描述符,即旋转不变均匀五元模式(RIU4-LQP),用于描述 mammogram 中的纹理模式,并提高图像特征的稳健性。在传统的处理方案中,通过从纹理模式计算直方图来获得图像特征。然而,这样的过程忽略了与纹理特征相关的非常重要的空间信息。本研究通过使用 Baddeley 的 K-非均匀函数来描述特征点集的空间分布信息,设计了一种新的特征向量,即 K-谱。通过 RIU4-LQP 和 K-谱提取的纹理特征用于将 mammogram 分类为 BI-RADS 密度类别。采用三种特征选择方法来优化特征集。在我们的实验中,使用了两个 mammogram 数据集,INbreast 和 MIAS,来测试所提出的方法,并对不同方案之间的对比分析和统计测试进行了比较。实验结果表明,与文献中描述的其他方法相比,我们提出的方法具有更好的性能,在 INbreast 数据集上的分类准确率达到了 92.76%,在 MIAS 数据集上的分类准确率达到了 86.96%。