Sohrabi Reza, Huh Jung-Hyun, Badieyan Somayesadat, Rakotondraibe Liva Harinantenaina, Kliebenstein Daniel J, Sobrado Pablo, Tholl Dorothea
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061.
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061.
Plant Cell. 2015 Mar;27(3):874-90. doi: 10.1105/tpc.114.132209. Epub 2015 Feb 27.
Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.
植物源挥发性化合物,如萜类化合物,具有显著的结构变异并发挥多种生态功能。尽管它们结构多样,但挥发性萜类化合物通常由少数几种5至20个碳原子的核心中间体产生。在这里,我们通过表明不规则的高萜/降萜可以以组织特异性方式从不同的生物合成途径产生,揭示了挥发性萜类生物合成中意想不到的可塑性。虽然已知拟南芥和其他被子植物通过地上组织中倍半萜和二萜叔醇的分解产生高萜(E)-4,8-二甲基-1,3,7-壬三烯(DMNT)或其C16类似物(E,E)-4,8,12-三甲基-1,3,7,11-十三碳四烯,但我们证明拟南芥根通过C30三萜二醇阿拉伯二醇的降解生物合成DMNT。该反应由十字花科特异性细胞色素P450单加氧酶CYP705A1催化,并通过根腐病原菌不规则腐霉感染以茉莉酸依赖的方式短暂诱导。CYP705A1与阿拉伯二醇合酶基因ABDS聚集在一起,并且这两个基因在根中柱和分生组织中组成性共表达。我们进一步提供了体外和体内证据,证明DMNT生物合成途径在抵抗不规则腐霉中的作用。我们的结果表明,陆地植物中DMNT生物合成通过三萜基因簇的组装具有生物合成可塑性,并为植物中通过三萜降解形成挥发性化合物提供了生化和遗传证据。