Suppr超能文献

植物体内挥发性物质生物合成的变异:拟南芥根中通过三萜降解形成病原体诱导的挥发性同型萜DMNT的另一条生物合成途径。

In planta variation of volatile biosynthesis: an alternative biosynthetic route to the formation of the pathogen-induced volatile homoterpene DMNT via triterpene degradation in Arabidopsis roots.

作者信息

Sohrabi Reza, Huh Jung-Hyun, Badieyan Somayesadat, Rakotondraibe Liva Harinantenaina, Kliebenstein Daniel J, Sobrado Pablo, Tholl Dorothea

机构信息

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061.

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061.

出版信息

Plant Cell. 2015 Mar;27(3):874-90. doi: 10.1105/tpc.114.132209. Epub 2015 Feb 27.

Abstract

Plant-derived volatile compounds such as terpenes exhibit substantial structural variation and serve multiple ecological functions. Despite their structural diversity, volatile terpenes are generally produced from a small number of core 5- to 20-carbon intermediates. Here, we present unexpected plasticity in volatile terpene biosynthesis by showing that irregular homo/norterpenes can arise from different biosynthetic routes in a tissue specific manner. While Arabidopsis thaliana and other angiosperms are known to produce the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) or its C16-analog (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene by the breakdown of sesquiterpene and diterpene tertiary alcohols in aboveground tissues, we demonstrate that Arabidopsis roots biosynthesize DMNT by the degradation of the C30 triterpene diol, arabidiol. The reaction is catalyzed by the Brassicaceae-specific cytochrome P450 monooxygenase CYP705A1 and is transiently induced in a jasmonate-dependent manner by infection with the root-rot pathogen Pythium irregulare. CYP705A1 clusters with the arabidiol synthase gene ABDS, and both genes are coexpressed constitutively in the root stele and meristematic tissue. We further provide in vitro and in vivo evidence for the role of the DMNT biosynthetic pathway in resistance against P. irregulare. Our results show biosynthetic plasticity in DMNT biosynthesis in land plants via the assembly of triterpene gene clusters and present biochemical and genetic evidence for volatile compound formation via triterpene degradation in plants.

摘要

植物源挥发性化合物,如萜类化合物,具有显著的结构变异并发挥多种生态功能。尽管它们结构多样,但挥发性萜类化合物通常由少数几种5至20个碳原子的核心中间体产生。在这里,我们通过表明不规则的高萜/降萜可以以组织特异性方式从不同的生物合成途径产生,揭示了挥发性萜类生物合成中意想不到的可塑性。虽然已知拟南芥和其他被子植物通过地上组织中倍半萜和二萜叔醇的分解产生高萜(E)-4,8-二甲基-1,3,7-壬三烯(DMNT)或其C16类似物(E,E)-4,8,12-三甲基-1,3,7,11-十三碳四烯,但我们证明拟南芥根通过C30三萜二醇阿拉伯二醇的降解生物合成DMNT。该反应由十字花科特异性细胞色素P450单加氧酶CYP705A1催化,并通过根腐病原菌不规则腐霉感染以茉莉酸依赖的方式短暂诱导。CYP705A1与阿拉伯二醇合酶基因ABDS聚集在一起,并且这两个基因在根中柱和分生组织中组成性共表达。我们进一步提供了体外和体内证据,证明DMNT生物合成途径在抵抗不规则腐霉中的作用。我们的结果表明,陆地植物中DMNT生物合成通过三萜基因簇的组装具有生物合成可塑性,并为植物中通过三萜降解形成挥发性化合物提供了生化和遗传证据。

相似文献

2
Formation and exudation of non-volatile products of the arabidiol triterpenoid degradation pathway in Arabidopsis roots.
Plant Signal Behav. 2017 Jan 2;12(1):e1265722. doi: 10.1080/15592324.2016.1265722.
4
Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21205-10. doi: 10.1073/pnas.1009975107. Epub 2010 Nov 18.
5
The biochemistry of homoterpenes--common constituents of floral and herbivore-induced plant volatile bouquets.
Phytochemistry. 2011 Sep;72(13):1635-46. doi: 10.1016/j.phytochem.2011.01.019. Epub 2011 Feb 19.
7
Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in Zea mays.
Plant Cell. 2016 Oct;28(10):2651-2665. doi: 10.1105/tpc.15.00919. Epub 2016 Sep 23.
9
A specialized metabolic network selectively modulates root microbiota.
Science. 2019 May 10;364(6440). doi: 10.1126/science.aau6389.

引用本文的文献

2
Sterols in plant biology Advances in studying membrane dynamics.
Cell Surf. 2025 May 29;13:100147. doi: 10.1016/j.tcsw.2025.100147. eCollection 2025 Jun.
3
Light-Regulated Growth, Anatomical, Metabolites Biosynthesis and Transcriptional Changes in .
Plants (Basel). 2024 Sep 30;13(19):2744. doi: 10.3390/plants13192744.
4
Aphid-Induced Volatiles and Subsequent Attraction of Natural Enemies Varies among Sorghum Cultivars.
J Chem Ecol. 2024 Jun;50(5-6):262-275. doi: 10.1007/s10886-024-01493-y. Epub 2024 Apr 22.
5
MAPK Cascades in Plant Microbiota Structure and Functioning.
J Microbiol. 2024 Mar;62(3):231-248. doi: 10.1007/s12275-024-00114-3. Epub 2024 Apr 8.
6
Terpenes modulate bacterial and fungal growth and sorghum rhizobiome communities.
Microbiol Spectr. 2023 Sep 29;11(5):e0133223. doi: 10.1128/spectrum.01332-23.
7
A redundant transcription factor network steers spatiotemporal Arabidopsis triterpene synthesis.
Nat Plants. 2023 Jun;9(6):926-937. doi: 10.1038/s41477-023-01419-8. Epub 2023 May 15.
9

本文引用的文献

1
Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8679-84. doi: 10.1073/pnas.1401553111. Epub 2014 May 27.
3
A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis.
New Phytol. 2013 Nov;200(3):675-690. doi: 10.1111/nph.12414. Epub 2013 Jul 26.
4
An effective strategy for exploring unknown metabolic pathways by genome mining.
J Am Chem Soc. 2013 Apr 17;135(15):5885-94. doi: 10.1021/ja401535g. Epub 2013 Apr 9.
6
Effector biology of plant-associated organisms: concepts and perspectives.
Cold Spring Harb Symp Quant Biol. 2012;77:235-47. doi: 10.1101/sqb.2012.77.015933. Epub 2012 Dec 6.
7
Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.
BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471-2105-13-134.
8
The specificity of herbivore-induced plant volatiles in attracting herbivore enemies.
Trends Plant Sci. 2012 May;17(5):303-10. doi: 10.1016/j.tplants.2012.03.012. Epub 2012 Apr 12.
9
Terpene Specialized Metabolism in Arabidopsis thaliana.
Arabidopsis Book. 2011;9:e0143. doi: 10.1199/tab.0143. Epub 2011 Apr 6.
10
Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001.
Nature. 2012 Jan 22;482(7383):116-9. doi: 10.1038/nature10743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验