Suppr超能文献

对一个由化能自养菌以及来自候选门类的细菌和古菌构成的高二氧化碳地下微生物群落进行宏基因组分析。

Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla.

作者信息

Emerson Joanne B, Thomas Brian C, Alvarez Walter, Banfield Jillian F

机构信息

Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720-4767, USA.

Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720-4767, USA.

出版信息

Environ Microbiol. 2016 Jun;18(6):1686-703. doi: 10.1111/1462-2920.12817. Epub 2015 Apr 8.

Abstract

Research on geologic carbon sequestration raises questions about potential impacts of subsurface microbiota on carbon cycling and biogeochemistry. Subsurface, high-CO2 systems are poorly biologically characterized, partly because of difficulty accessing high-volume, uncontaminated samples. CO2 -driven Crystal Geyser (CG, Utah, USA), an established geologic carbon sequestration analogue, provides high volumes of deep (∼ 200-500 m) subsurface fluids. We explored microbial diversity and metabolic potential in this high-CO2 environment by assembly and analysis of metagenomes recovered from geyser water filtrate. The system is dominated by neutrophilic, iron-oxidizing bacteria, including 'marine' Mariprofundus (Zetaproteobacteria) and 'freshwater' Gallionellales, sulfur-oxidizing Thiomicrospira crunogena and Thiobacillus-like Hydrogenophilales. Near-complete genomes were reconstructed for these bacteria. CG is notably populated by a wide diversity of bacteria and archaea from phyla lacking isolated representatives (candidate phyla) and from as-yet undefined lineages. Many bacteria affiliate with OD1, OP3, OP9, PER, ACD58, WWE3, BD1-5, OP11, TM7 and ZB2. The recovery of nearly 100 genes encoding ribulose-1,5 bisphosphate carboxylase-oxygenase subunit proteins of the Calvin cycle and AMP salvage pathways suggests a strong biological role in high-CO2 subsurface carbon cycling. Overall, we predict microbial impacts on subsurface biogeochemistry via iron, sulfur, and complex carbon oxidation, carbon and nitrogen fixation, fermentation, hydrogen metabolism, and aerobic and anaerobic respiration.

摘要

地质碳封存研究引发了关于地下微生物群对碳循环和生物地球化学潜在影响的问题。地下高二氧化碳系统的生物学特征了解甚少,部分原因是难以获取大量未受污染的样本。以二氧化碳驱动的水晶间歇泉(美国犹他州)是一个既定的地质碳封存模拟系统,可提供大量深层(约200 - 500米)地下流体。我们通过对从间歇泉水滤液中回收的宏基因组进行组装和分析,探索了这种高二氧化碳环境中的微生物多样性和代谢潜力。该系统以嗜中性铁氧化细菌为主,包括“海洋”的Mariprofundus(ζ变形菌纲)和“淡水”的嘉利翁菌目、硫氧化的嗜泉硫杆菌和类硫杆菌嗜氢菌目。对这些细菌重建了近乎完整的基因组。水晶间歇泉中显著存在着来自缺乏分离代表的门(候选门)以及尚未明确谱系的各种各样的细菌和古菌。许多细菌隶属于OD1、OP3、OP9、PER、ACD58、WWE3、BD1 - 5、OP11、TM7和ZB2。回收的近100个编码卡尔文循环的1,5 - 二磷酸核酮糖羧化酶 - 加氧酶亚基蛋白和AMP补救途径的基因表明,其在高二氧化碳地下碳循环中具有重要的生物学作用。总体而言,我们预测微生物通过铁、硫和复杂碳氧化、碳和氮固定、发酵、氢代谢以及有氧和无氧呼吸对地下生物地球化学产生影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验