Castelle Cindy J, Wrighton Kelly C, Thomas Brian C, Hug Laura A, Brown Christopher T, Wilkins Michael J, Frischkorn Kyle R, Tringe Susannah G, Singh Andrea, Markillie Lye Meng, Taylor Ronald C, Williams Kenneth H, Banfield Jillian F
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720 USA.
Department of Microbiology, The Ohio State University, Columbus, OH 43210 USA.
Curr Biol. 2015 Mar 16;25(6):690-701. doi: 10.1016/j.cub.2015.01.014. Epub 2015 Feb 19.
Archaea represent a significant fraction of Earth's biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown.
We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earth's biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles.
The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.
古菌是地球生物多样性的重要组成部分,但与细菌相比,人们对它们的了解仍然少得多。基因调查、一些宏基因组学研究以及一些单细胞测序项目已经揭示了许多研究较少的古菌门。某些谱系似乎分支很深,可能是一个主要门辐射的一部分。这种辐射的结构以及这些生物体的生理学几乎仍然未知。
我们使用基因组解析宏基因组分析来研究古菌在陆地地下生物地球化学循环中的多样性、基因组大小、代谢能力和潜在作用。我们对来自美国科罗拉多河附近一个含水层的复杂沉积物和浮游生物群落的DNA进行了测序,并使用非培养方法重建了古菌的首个完整基因组。为了提供分类学背景,我们分析了另外151个新采样的古菌序列。我们在一个主要的、明显分支较深的门组(一个超门)中解析出了两个新门。这些生物体的基因组较小,代谢预测表明它们对地球生物地球化学循环的主要贡献涉及碳和氢代谢,可能与共生和/或基于发酵的生活方式有关。
这些结果极大地扩展了古菌域的基因组采样,并澄清了一个主要超门内的分类学名称。这项研究与最近发表的关于缺乏培养代表的细菌门的工作相结合,揭示了一个关于具有小基因组、新颖蛋白质组组成以及在两个域中都有强烈相互依存关系的生物体主要辐射的迷人现象。