IEEE Trans Neural Netw Learn Syst. 2015 Dec;26(12):3070-82. doi: 10.1109/TNNLS.2015.2402694. Epub 2015 Feb 26.
Learning optimal spatio-temporal filters is a key to feature extraction for single-trial electroencephalogram (EEG) classification. The challenges are controlling the complexity of the learning algorithm so as to alleviate the curse of dimensionality and attaining computational efficiency to facilitate online applications, e.g., brain-computer interfaces (BCIs). To tackle these barriers, this paper presents a novel algorithm, termed regularized spatio-temporal filtering and classification (RSTFC), for single-trial EEG classification. RSTFC consists of two modules. In the feature extraction module, an l2 -regularized algorithm is developed for supervised spatio-temporal filtering of the EEG signals. Unlike the existing supervised spatio-temporal filter optimization algorithms, the developed algorithm can simultaneously optimize spatial and high-order temporal filters in an eigenvalue decomposition framework and thus be implemented highly efficiently. In the classification module, a convex optimization algorithm for sparse Fisher linear discriminant analysis is proposed for simultaneous feature selection and classification of the typically high-dimensional spatio-temporally filtered signals. The effectiveness of RSTFC is demonstrated by comparing it with several state-of-the-arts methods on three brain-computer interface (BCI) competition data sets collected from 17 subjects. Results indicate that RSTFC yields significantly higher classification accuracies than the competing methods. This paper also discusses the advantage of optimizing channel-specific temporal filters over optimizing a temporal filter common to all channels.
学习最优的时空滤波器是从单次脑电 (EEG) 信号中提取特征进行分类的关键。挑战在于控制学习算法的复杂性,以减轻维度灾难,并实现计算效率,从而促进在线应用,例如脑机接口 (BCI)。为了解决这些障碍,本文提出了一种新的算法,称为正则化时空滤波与分类 (RSTFC),用于单次 EEG 分类。RSTFC 由两个模块组成。在特征提取模块中,开发了一种 l2 正则化算法,用于对 EEG 信号进行有监督的时空滤波。与现有的有监督时空滤波器优化算法不同,所开发的算法可以在特征值分解框架中同时优化空间和高阶时间滤波器,因此可以高效地实现。在分类模块中,提出了一种用于稀疏 Fisher 线性判别分析的凸优化算法,用于对典型的高维时空滤波信号进行同时特征选择和分类。通过将 RSTFC 与来自 17 个受试者的三个脑机接口 (BCI) 竞赛数据集的几个最新方法进行比较,验证了其有效性。结果表明,RSTFC 比竞争方法产生了更高的分类精度。本文还讨论了优化特定通道的时间滤波器优于优化所有通道共用的时间滤波器的优势。