Lu Jun, Xie Kan, McFarland Dennis J
IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):847-57. doi: 10.1109/TNSRE.2014.2315717. Epub 2014 Apr 7.
Movement related potentials (MRPs) are used as features in many brain-computer interfaces (BCIs) based on electroencephalogram (EEG). MRP feature extraction is challenging since EEG is noisy and varies between subjects. Previous studies used spatial and spatio-temporal filtering methods to deal with these problems. However, they did not optimize temporal information or may have been susceptible to overfitting when training data are limited and the feature space is of high dimension. Furthermore, most of these studies manually select data windows and low-pass frequencies. We propose an adaptive spatio-temporal (AST) filtering method to model MRPs more accurately in lower dimensional space. AST automatically optimizes all parameters by employing a Gaussian kernel to construct a low-pass time-frequency filter and a linear ridge regression (LRR) algorithm to compute a spatial filter. Optimal parameters are simultaneously sought by minimizing leave-one-out cross-validation error through gradient descent. Using four BCI datasets from 12 individuals, we compare the performances of AST filter to two popular methods: the discriminant spatial pattern filter and regularized spatio-temporal filter. The results demonstrate that our AST filter can make more accurate predictions and is computationally feasible.
运动相关电位(MRP)在许多基于脑电图(EEG)的脑机接口(BCI)中被用作特征。由于EEG存在噪声且个体之间存在差异,MRP特征提取具有挑战性。先前的研究使用空间和时空滤波方法来处理这些问题。然而,它们没有优化时间信息,或者在训练数据有限且特征空间维度较高时可能容易出现过拟合。此外,这些研究大多手动选择数据窗口和低通频率。我们提出一种自适应时空(AST)滤波方法,以在较低维度空间中更准确地对MRP进行建模。AST通过使用高斯核构建低通时频滤波器和线性岭回归(LRR)算法来计算空间滤波器,从而自动优化所有参数。通过梯度下降最小化留一法交叉验证误差,同时寻找最优参数。使用来自12名个体的四个BCI数据集,我们将AST滤波器的性能与两种常用方法进行比较:判别空间模式滤波器和正则化时空滤波器。结果表明,我们的AST滤波器能够做出更准确的预测,并且在计算上是可行的。